358
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory

ORCID Icon &
Pages 350-359 | Received 16 Aug 2016, Accepted 28 Oct 2016, Published online: 30 Mar 2017
 

ABSTRACT

In this article, nonlocal free vibration analysis of curved functionally graded piezoelectric (FGP) nanobeams is conducted using a Navier-type solution method. The model contains a nonlocal stress field parameter and also a nonlocal strain-electric field gradient parameter to capture the size effects. Inclusion of these nonlocal parameters introduces both stiffness-softening and stiffness-hardening effects in the analysis of curved nanobeams. Nonlocal governing equations of curved FGP nanobeam are obtained from Hamilton's principle based on the Euler–Bernoulli beam model. The results are validated with those of curved FG nanobeams available in the literature. Finally, the influences of electric voltage, length scale parameter, nonlocal parameter, opening angle, material composition, and slenderness ratio on vibrational characteristics of nanosize curved FG piezoelectric beams are explored. These results may be useful in accurate analysis and design of smart nanostructures constructed from piezoelectric materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.