358
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory

ORCID Icon &
Pages 350-359 | Received 16 Aug 2016, Accepted 28 Oct 2016, Published online: 30 Mar 2017

References

  • M. R. Barati, M. H. Sadr, and A. M. Zenkour, Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation, Int. J. Mech. Sci., vol. 117, pp. 309–320, 2016.
  • F. Ebrahimi and M. R. Barati, Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium, J. Braz. Soc. Mech. Sci. Eng., vol. 39, pp. 937–952, 2016.
  • F. Ebrahimi and M. R. Barati, An exact solution for buckling analysis of embedded piezoelectro-magnetically actuated nanoscale beams, Adv. Nano Res., vol. 4, no. 2, pp. 65–84, 2016.
  • F. Ebrahimi and M. R. Barati, Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field, J. Intell. Mater. Syst. Struct., 2016. DOI: 1045389X16672569
  • A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., vol. 10.1, pp. 1–16, 1972.
  • A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., vol. 54.9, pp. 4703–4710, 1983.
  • F. Ebrahimi, M. R. Barati, and A. Dabbagh, A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates, Int. J. Eng. Sci., vol. 107, pp. 169–182, 2016.
  • F. Ebrahimi and M. R. Barati, A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams, Compos. Struct., vol. 159, pp. 174–182, 2017.
  • M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Phys. E: Low-Dimen. Syst. Nanostruct., vol. 41, no. 9, pp. 1651–1655, 2009.
  • F. Ebrahimi and P. Nasirzadeh, A nonlocal Timoshenko beam theory for vibration analysis of thick nanobeams using differential transform method, J. Theor. Appl. Mech., vol. 53, no. 4, pp. 1041–1052, 2015.
  • F. Ebrahimi and S. H. S. Hosseini, Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates, J. Therm. Stress., vol. 39, no. 5, pp. 606–625, 2016.
  • F. Ebrahimi and M. R. Barati, On nonlocal characteristics of curved inhomogeneous Euler–Bernoulli nanobeams under different temperature distributions, Appl. Phys. A, vol. 122, no. 10, pp. 880, 2016.
  • F. Ebrahimi and M. R. Barati, A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment, Appl. Phys. A, vol. 122, no. 9, pp. 792, 2016.
  • H. T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, Int. J. Eng. Sci., vol. 52, pp. 56–64, 2012.
  • M. A. Eltaher, S. A. Emam, and F. F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams, Appl. Math. Comput., vol. 218, no. 14, pp. 7406–7420, 2012.
  • M. A. Eltaher, S. A. Emam, and F. F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams, Compos. Struct., vol. 96, pp. 82–88, 2013.
  • M. Şimşek and H. H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory, Compos. Struct., vol. 97, pp. 378–386, 2013.
  • F. Ebrahimi, M. Ghadiri, E. Salari, S. A. H. Hoseini, and G. R. Shaghaghi, Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams, J. Mech. Sci. Technol., vol. 29, no. 3, pp. 1207–1215, 2015.
  • F. Ebrahimi and E. Salari, Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams, Smart Mater. Struct., vol. 24, no. 12, pp. 125007, 2015.
  • F. Ebrahimi and E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions, Compos. B Eng., vol. 78, pp. 272–290, 2015.
  • F. Ebrahimi and E. Salari, Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method, Compos. B: Eng., vol. 79, pp. 156–169, 2015.
  • F. Ebrahimi and E. Salari, Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronaut., vol. 113, pp. 29–50, 2015.
  • F. Ebrahimi and E. Salari, Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams, Mech. Adv. Mater. Struct., vol. 23, no. 12, pp. 1379–1397, 2015.
  • F. Ebrahimi and M. R. Barati, Vibration analysis of nonlocal beams made of functionally graded material in thermal environment, Eur. Phys. J. Plus, vol. 131, no. 8, pp. 279, 2016.
  • F. Ebrahimi and M. R. Barati, Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams, Mech. Adv. Mater. Struct., vol. 7, no. 3, pp. 119–143, 2016.
  • F. Ebrahimi and M. R. Barati, Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory, Int. J. Smart Nano Mater., pp. 1–25, 2016.
  • H. Niknam and M. M. Aghdam, A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation, Compos. Struct., vol. 119, pp. 452–462, 2015.
  • F. Ebrahimi and M. R. Barati, A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams, Arab. J. Sci. Eng., vol. 41, no. 5, pp. 1679–1690, 2016.
  • F. Ebrahimi and M. R. Barati, Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams, Eur. Phys. J. Plus, vol. 131, no. 9, pp. 346, 2016.
  • F. Ebrahimi and M. R. Barati, Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams, J. Mech., vol. 33, no.1, pp. 23–33, 2016.
  • F. Ebrahimi and M. R. Barati, Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment, J. Vibr. Control, 2016. DOI: 1077546316646239
  • F. Ebrahimi and M. R. Barati, Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field, Appl. Phys. A, vol. 122, no. 4, pp. 1–18, 2016.
  • F. Ebrahimi and M. R. Barati, A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures, Int. J. Engg. Sci., vol. 107, pp. 183–196, 2016.
  • F. Ebrahimi and M. R. Barati, Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams, Eur. Phys. J. Plus, vol. 131, no. 7, pp. 1–14, 2016.
  • F. Ebrahimi and M. R. Barati, Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory, Smart Mater. Struct., vol. 25, no. 10, pp. 105014, 2016.
  • F. Ebrahimi and M. R. Barati, Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments, Appl. Phys. A, vol. 122, no. 10, pp. 910, 2016.
  • D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, vol. 51, no. 8, pp. 1477–1508, 2003.
  • C. W. Lim, G. Zhang, and J. N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015.
  • L. Li and Y. Hu, Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory, Int. J. Eng. Sci., vol. 97, pp. 84–94, 2015.
  • L. Li, X. Li, and Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, Int. J. Eng. Sci., vol. 102, pp. 77–92, 2016.
  • F. Ebrahimi and M. R. Barati, Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory, Arab. J. Sci. Eng., pp. 1–12, 2016. DOI: 10.1007/s13369-016-2266-4
  • F. Ebrahimi and M. R. Barati, Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory, Appl. Phys. A, vol. 122, no. 9, pp. 843, 2016.
  • F. Ebrahimi and M. R. Barati, Thermal environment effects on wave dispersion behavior of inhomogeneous strain gradient nanobeams based on higher order refined beam theory, J. Therm. Stress., vol. 39, no. 12, pp. 1560–1571, 2016.
  • F. Ebrahimi, M. R. Barati, and P. Haghi, Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams, J. Therm. Stress., pp. 1–13, 2016. DOI: 10.1080/01495739.2016.1230483
  • F. Ebrahimi, M. R. Barati, and A. Dabbagh, Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams, Appl. Phys. A, vol. 122, no. 11, pp. 949, 2016.
  • F. Ebrahimi, M. R. Barati, and P. Haghi, Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams, Eur. Phys. J. Plus, vol. 131, no. 11, pp. 383, 2016.
  • Y. Yue, K. Xu, and E. C. Aifantis, Strain gradient and electric field gradient effects in piezoelectric cantilever beams, J. Mech. Behav. Mater., vol. 24, no. 3–4, pp. 121–127, 2015.
  • A. Assadi and B. Farshi, Size dependent vibration of curved nanobeams and rings including surface energies, Phys. E: Low-Dimen. Syst. Nanostruct., vol. 43, no. 4, pp. 975–978, 2011.
  • Z. Yan and L. Jiang, Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects, J. Phys. D: Appl. Phys., vol. 44, no. 36, pp. 365301, 2011.
  • H. Kananipour, M. Ahmadi, and H. Chavoshi, Application of nonlocal elasticity and DQM to dynamic analysis of curved nanobeams, Latin Am. J. Solids Struct., vol. 11, no. 5, pp. 848–853, 2014.
  • A. Setoodeh, M. Derahaki, and N. Bavi, DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory, Latin Am. J. Solids Struct., vol. 12, no. 10, pp. 1901–1917, 2015.
  • E. Tufekci, S. A. Aya, and O. Oldac, In-plane static analysis of nonlocal curved beams with varying curvature and cross-section, Int. J. Appl. Mech., vol. 8, no. 1, pp. 1650010, 2016.
  • S. A. H. Hosseini and O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model, Appl. Phys. A, vol. 122, no. 3, pp. 1–11, 2016.
  • L. L. Ke and Y. S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory, Smart Mater. Struct., vol. 21, no. 2, pp. 025018, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.