509
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modeling fracture in brittle materials with inertia effects using the phase field method

, & ORCID Icon
Pages 144-159 | Received 07 Oct 2021, Accepted 21 Nov 2021, Published online: 16 Dec 2021
 

Abstract

The phase field method uses a length scale parameter to regularize the discrete crack to a diffuse crack, which removes the numerical tracking of the discontinuities in the displacement. The displacement field is coupled with the phase field and both are solved as a sequentially coupled systems using staggered method. The phase field ϕ varies between zero and unity (i.e., ϕ=0 for intact region and ϕ=1 for fully broken region), and it is a scalar. In this study, a new way of implementation is done using ABAQUS software to solve for the two fields. User defined element subroutine (UEL) is used to solve for the phase field variable and user defined material subroutine (UMAT) for the displacement field variable. Phase field model can simulate any complex crack paths and branching even without previously defined cracks. Some benchmark examples of quasi-static brittle fracture and dynamic brittle fracture are solved and verified with the existing numerical results. To account for the rate-dependent effect under high-rate loading, micro-inertia is incorporated into the phase-field model for dynamic fracture as proposed in the literature and verified with one example.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.