509
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modeling fracture in brittle materials with inertia effects using the phase field method

, & ORCID Icon
Pages 144-159 | Received 07 Oct 2021, Accepted 21 Nov 2021, Published online: 16 Dec 2021

References

  • A.A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., vol. 221, no. 582–593, pp. 163–198, 1921.
  • G.R. Irwin, Fracture, Elasticity and Plasticity. Springer, Berlin, pp. 551–590, 1958.
  • F. Zhou and J.F. Molinari, Dynamic crack propagation with cohesive elements: A methodology to address mesh dependency, Int. J. Numer. Meth. Engng., vol. 59, no. 1, pp. 1–24, 2004. DOI: 10.1002/nme.857.
  • N.M. Azevedo and J.V. Lemos, Hybrid discrete element/finite element method for fracture analysis, Comput. Methods Appl. Mech. Eng., vol. 195, no. 3336, pp. 4579–4593, 2006. DOI: 10.1016/j.cma.2005.10.005.
  • C. Linder and F. Armero, Finite elements with embedded branching, Finite Elem. Anal. Des., vol. 45, no. 4, pp. 280–293, 2009. DOI: 10.1016/j.finel.2008.10.012.
  • I. Babuška, U. Banerjee, and J.E. Osborn, Generalized finite element methods - Main ideas, results and perspective, Int. J. Comput. Methods, vol. 01, no. 01, pp. 67–103, 2004. DOI: 10.1142/S0219876204000083.
  • N. Vu-Bac, H. Nguyen-Xuan, L. Chen, C.K. Lee, G. Zi, X. Zhuang, G.R. Liu, and T. Rabczuk, A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics, J. Appl. Math., vol. 2013, pp. 1–12, 2013. DOI: 10.1155/2013/978026.
  • G.R. Johnson and R.A. Stryk, Eroding interface and improved tetrahedral element algorithms for high-velocity impact computations in three dimensions, Int. J. Impact Eng., vol. 5, no. 1–4, pp. 411–421, 1987. DOI: 10.1016/0734-743X(87)90057-1.
  • X.P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, vol. 42, no. 9, pp. 1397–1434, 1994. DOI: 10.1016/0022-5096(94)90003-5.
  • G.T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., vol. 33, no. 2022, pp. 2899–2938, 1996. DOI: 10.1016/0020-7683(95)00255-3.
  • G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech., vol. 23, no. 3, pp. 444–622, 1959. DOI: 10.1016/0021-8928(59)90157-1.
  • A. Hillerborg, M. Modéer, and P.E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cem. Concr. Res., vol. 6, no. 6, pp. 773–781, 1976. DOI: 10.1016/0008-8846(76)90007-7.
  • J.N. Reddy and A. Srinivasa, On the force-displacement characteristics of finite elements for elasticity and related problems, Finite Elem. Anal. Des., vol. 104, pp. 35–40, 2015. DOI: 10.1016/j.finel.2015.04.011.
  • J.N. Reddy, An Introduction to the Finite Element Method, McGraw Hill, New York, 2006.
  • L.M. Kachanov, Time of the rupture process under creep conditions, Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk., vol. 8, pp. 26–31, 1958.
  • Z.P. Bažant and B.H. Oh, Crack band theory for fracture of concrete, Mat. Constr., vol. 16, no. 3, pp. 155–177, 1983. DOI: 10.1007/BF02486267.
  • G. Pijaudier-Cabot and Z.P. Bažant, Nonlocal damage theory, J. Eng. Mech., vol. 113, no. 10, pp. 1512–1533, 1987. DOI: 10.1061/(ASCE)0733-9399(1987)113:10(1512).
  • A. Karamnejad, V.P. Nguyen, and L.J. Sluys, A multi-scale rate dependent crack model for quasi-brittle heterogeneous materials, Eng. Fract. Mech., vol. 104, pp. 96–113, 2013. DOI: 10.1016/j.engfracmech.2013.03.009.
  • L.F. Pereira, J. Weerheijm, and L.J. Sluys, A numerical study on crack branching in quasi-brittle materials with a new effective rate-dependent nonlocal damage model, Eng. Fract. Mech., vol. 182, pp. 689–707, 2017. DOI: 10.1016/j.engfracmech.2017.06.019.
  • J. Ožbolt, J. Bošnjak, and E. Sola, Dynamic fracture of concrete compact tension specimen: Experimental and numerical study, Int. J. Solids Struct., vol. 50, no. 2526, pp. 4270–4278, 2013. DOI: 10.1016/j.ijsolstr.2013.08.030.
  • S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, vol. 48, no. 1, pp. 175–209, 2000. DOI: 10.1016/S0022-5096(99)00029-0.
  • A. Pandolfi and M. Ortiz, An eigenerosion approach to brittle fracture, Int. J. Numer. Meth. Engng., vol. 92, no. 8, pp. 694–714, 2012. DOI: 10.1002/nme.4352.
  • B. Schmidt, F. Fraternali, and M. Ortiz, Eigenfracture: An eigendeformation approach to variational fracture, Multiscale Model. Simul., vol. 7, no. 3, pp. 1237–1266, 2009. DOI: 10.1137/080712568.
  • G. Francfort and J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, vol. 46, no. 8, pp. 1319–1342, 1998. DOI: 10.1016/S0022-5096(98)00034-9.
  • G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results. Arch. Ration. Mech. Anal., vol. 162, no. 2, pp. 101–135, 2002.
  • B. Bourdin, G. Francfort, and J.J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, vol. 48, no. 4, pp. 797–826, 2000. DOI: 10.1016/S0022-5096(99)00028-9.
  • B. Bourdin, C.J. Larsen, and C. Richardson, A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., vol. 168, no. 2, pp. 133–143, 2011. DOI: 10.1007/s10704-010-9562-x.
  • M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, and C.M. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., vol. 217–220, pp. 77–95, 2012. DOI: 10.1016/j.cma.2012.01.008.
  • A. Schlüter, A. Willenbücher, C. Kuhn, and R. Müller, Phase field approximation of dynamic brittle fracture, Comput. Mech., vol. 54, no. 5, pp. 1141–1161, 2014. DOI: 10.1007/s00466-014-1045-x.
  • G. Liu, Q. Li, M.A. Msekh, and Z. Zuo, Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model, Comput. Mater. Sci., vol. 121, pp. 35–47, 2016. DOI: 10.1016/j.commatsci.2016.04.009.
  • S. Li, L. Tian, and X. Cui, Phase field crack model with diffuse description for fracture problem and implementation in engineering applications, Adv. Eng. Softw., vol. 129, pp. 44–56, 2019. DOI: 10.1016/j.advengsoft.2018.09.005.
  • M.J. Borden, T.J. Hughes, C.M. Landis, and C.V. Verhoosel, A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Eng., vol. 273, pp. 100–118, 2014. DOI: 10.1016/j.cma.2014.01.016.
  • C.V. Verhoosel and R. Borst, A phase-field model for cohesive fracture, Int. J. Numer. Meth. Engng., vol. 96, no. 1, pp. 43–62, 2013. DOI: 10.1002/nme.4553.
  • D. Kamensky, G. Moutsanidis, and Y. Bazilevs, Hyperbolic phase field modeling of brittle fracture: Part I-theory and simulations, J. Mech. Phys. Solids, vol. 121, pp. 81–98, 2018. DOI: 10.1016/j.jmps.2018.07.010.
  • L. Hai, J.-Y. Wu, and J. Li, A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids, Eng. Fract. Mech., vol. 225, pp. 106821, 2020. DOI: 10.1016/j.engfracmech.2019.106821.
  • C. Miehe, M. Hofacker, and F. Welschinger, A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., vol. 199, no. 4548, pp. 2765–2778, 2010. DOI: 10.1016/j.cma.2010.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.