72
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Dynamics of functionally graded porous rotating Rayleigh microbeams with longitudinal movement in complex fields

, &
Received 24 Jun 2023, Accepted 31 Jul 2023, Published online: 11 Aug 2023
 

Abstract

As a first attempt, the vibration of rotating functionally graded porous Rayleigh beams under longitudinal motion in hygro-thermo-magnetic fields is scrutinized numerically and analytically based on the scale-dependent strain gradient theory. Also, parametric studies are performed to diagnose the impacts of critical factors such as the functionally graded index, rotary inertia parameter, porosity distribution, foundation characteristics, environmental loads, boundary conditions, axial and tangential follower forces on the microbeam stability. It is assumed that the material properties of the microbeam are graded across the thickness according to a power-law function with six different porosity models. The dynamical equations of the functionally graded microbeam are derived based on the extended Hamilton’s principle. Then, backward and forward vibrational frequencies are computed with the aid of the Galerkin discretization scheme and eigenvalue analysis. For validation purposes, the results are compared with published reports. Furthermore, the instability border of the microbeam is determined via an analytical approach. Critical rotational and longitudinal speeds as well as Campbell and stability diagrams are obtained to identify the stability evolution. The results declared that as the functionally graded index and rotary inertia parameter ascend, divergence and flutter speeds of the microbeam descend. The presented outcomes could be helpful in the optimum design of inhomogeneous gyroscopic microsystems.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.