72
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Dynamics of functionally graded porous rotating Rayleigh microbeams with longitudinal movement in complex fields

, &
Received 24 Jun 2023, Accepted 31 Jul 2023, Published online: 11 Aug 2023

References

  • H. Sarparast, A. Alibeigloo, S.S. Kesari, and S. Esfahani, Size-dependent dynamical analysis of spinning nanotubes conveying magnetic nanoflow considering surface and environmental effects, Appl. Math. Modell., vol. 108, pp. 92–121, 2022. DOI: 10.1016/j.apm.2022.03.017.
  • R. Panahi, M. Asghari, and V. Borjalilou, Nonlinear forced vibration analysis of micro-rotating shaft–disk systems through a formulation based on the nonlocal strain gradient theory, Archiv. Civ. Mech. Eng., vol. 23, no. 2, pp. 85, 2023. DOI: 10.1007/s43452-023-00617-7.
  • X.-D. Yang, J.-H. Yang, Y.-J. Qian, W. Zhang, and R.V. Melnik, Dynamics of a beam with both axial moving and spinning motion: An example of bi-gyroscopic continua, Eur. J. Mech.-A/Solids., vol. 69, pp. 231–237, 2018. DOI: 10.1016/j.euromechsol.2018.01.006.
  • Y. Bai, M. Suhatril, Y. Cao, A. Forooghi, and H. Assilzadeh, Hygro–thermo–magnetically induced vibration of nanobeams with simultaneous axial and spinning motions based on nonlocal strain gradient theory, Eng. Comp.., vol. 38, no. 3, pp. 2509–2526, 2022. DOI: 10.1007/s00366-020-01218-1.
  • X. Li, Y. Qin, Y. Li, and X. Zhao, The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam, Mech. Adv. Mater. Struct., vol. 25, no. 9, pp. 722–731, 2018. DOI: 10.1080/15376494.2017.1308598.
  • K. Zhu and J. Chung, Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions, Appl. Math. Modell., vol. 66, pp. 362–382, 2019. DOI: 10.1016/j.apm.2018.09.021.
  • A. Ebrahimi-Mamaghani, O. Koochakianfard, N. Mostoufi, and H.H. Khodaparast, Dynamics of spinning pipes conveying flow with internal elliptical cross-section surrounded by an external annular fluid by considering rotary inertia effects, Appl. Math. Modell., vol. 120, pp. 330–354, 2023. DOI: 10.1016/j.apm.2023.03.043.
  • W. Xu, G. Pan, M.A. Khadimallah, and O. Koochakianfard, Nonlocal vibration analysis of spinning nanotubes conveying fluid in complex environments, Waves Random Complex Medium., vol. 33, pp. 1–33, 2021. DOI: 10.1080/17455030.2021.1970283.
  • P. Liu, J. Tang, Y. Li, and Z. Kun, Static and dynamic analysis of the postbuckling of axially moving spin beams, Mech. Adv. Mater. Struct., vol. 31, pp. 1–15, 2023. DOI: 10.1080/15376494.2023.2214919.
  • N.S. Mahmoudabadi, The use of viscous dampers for retrofitting of reinforced concrete frames, Turk. J. Comput. Math. Educ., vol. 12, pp. 7739–7744, 2021.
  • N.S. Mahmoudabadi, The study of cable behavior with two spring-dampers and one viscous damper, World J. Environ. Biosci., vol. 9, pp. 128–136, 2020.
  • A. Alibeigloo, Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method, Mech. Adv. Mater. Struct., vol. 25, no. 9, pp. 766–784, 2018. DOI: 10.1080/15376494.2017.1308585.
  • A. Alibeigloo, Three-dimensional exact solution for functionally graded rectangular plate with integrated surface piezoelectric layers resting on elastic foundation, Mech. Adv. Mater. Struct., vol. 17, no. 3, pp. 183–195, 2010. DOI: 10.1080/15376490903558002.
  • Y. Tlidji, T.H. Daouadji, L. Hadji, A. Tounsi, and E.A.A. Bedia, Elasticity solution for bending response of functionally graded sandwich plates under thermomechanical loading, J. Therm. Stresses., vol. 37, no. 7, pp. 852–869, 2014. DOI: 10.1080/01495739.2014.912917.
  • K. Sharma and D. Kumar, Nonlinear stability analysis of a perforated FGM plate under thermal load, Mech. Adv. Mater. Struct., vol. 25, no. 2, pp. 100–114, 2018. DOI: 10.1080/15376494.2016.1255817.
  • H. Bayesteh, H. Khazal, and S. Mohammadi, Evaluation of T-stress in stationary and propagating adiabatic cracks in FGM subjected to thermo-mechanical loading, Mech. Adv. Mater. Struct., vol. 30, no. 11, pp. 2284–2303, 2023. DOI: 10.1080/15376494.2022.2053905.
  • B. Mirzavand and M.R. Eslami, A closed-form solution for thermal buckling of piezoelectric FGM hybrid cylindrical shells with temperature dependent properties, Mech. Adv. Mater. Struct., vol. 18, no. 3, pp. 185–193, 2011. DOI: 10.1080/15376494.2010.499021.
  • M. Rabani Bidgoli, M. Saeed Karimi, and A. Ghorbanpour Arani, Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium, Mech. Adv. Mater. Struct., vol. 23, no. 7, pp. 819–831, 2016. DOI: 10.1080/15376494.2015.1029170.
  • S. Rajasekaran and H. Bakhshi Khaniki, Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory, Mech. Adv. Mater. Struct., vol. 26, no. 14, pp. 1245–1259, 2019. DOI: 10.1080/15376494.2018.1432797.
  • L. Hadji, N. Zouatnia, and A. Kassoul, Wave propagation in functionally graded beams using various higher-order shear deformation beams theories, Struct. Eng. Mech., vol. 62, no. 2, pp. 143–149, 2017. DOI: 10.12989/sem.2017.62.2.143.
  • N. Zouatnia and L. Hadji, Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory, Earthq. Struct., vol. 16, pp. 177, 2019.
  • S. Du, J. Yin, H. Xie, Y. Sun, T. Fang, Y. Wang, J. Li, D. Xiao, X. Yang, S. Zhang, D. Wang, W. Chen, W.-Y. Yin, and R. Zheng, Auger scattering dynamic of photo-excited hot carriers in nano-graphite film, Appl. Phys. Lett., vol. 121, no. 18, pp. 181104, 2022. DOI: 10.1063/5.0116720.
  • A. Ebrahimi-Mamaghani, A. Forooghi, H. Sarparast, A. Alibeigloo, and M. Friswell, Vibration of viscoelastic axially graded beams with simultaneous axial and spinning motions under an axial load, Appl. Math. Modell., vol. 90, pp. 131–150, 2021. DOI: 10.1016/j.apm.2020.08.041.
  • F. Liang, A. Gao, and X.-D. Yang, Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans, Appl. Math. Modell., vol. 83, pp. 454–469, 2020. DOI: 10.1016/j.apm.2020.03.011.
  • Z.-X. Zhou and O. Koochakianfard, Dynamics of spinning functionally graded Rayleigh tubes subjected to axial and follower forces in varying environmental conditions, Eur. Phys. J. Plus., vol. 137, no. 1, pp. 1–35, 2022. DOI: 10.1140/epjp/s13360-021-02226-w.
  • R. Patil, S. Joladarashi, and R. Kadoli, Bending and vibration studies of FG porous sandwich beam with viscoelastic boundary conditions: FE approach, Mech. Adv. Mater. Struct., vol. 30, no. 17, pp. 1–13, 2022. DOI: 10.1080/15376494.2022.2079030.
  • L.-L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang, Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials, Mech. Adv. Mater. Struct., vol. 16, no. 6, pp. 488–502, 2009. DOI: 10.1080/15376490902781175.
  • A. Saritas, T. Gurol, and O. Soydas, Hybrid finite element for analysis of functionally graded beams, Mech. Adv. Mater. Struct., vol. 24, no. 3, pp. 228–239, 2017. DOI: 10.1080/15376494.2015.1128024.
  • L. Hadji, F. Bernard, and N. Zouatnia, Bending and free vibration analysis of porous-functionally-graded (PFG) beams resting on elastic foundations, Fluid Dyn. Mater. Process., vol. 19, no. 4, pp. 1043–1054, 2023. DOI: 10.32604/fdmp.2022.022327.
  • W. Zhang, S. Kang, X. Liu, B. Lin, and Y. Huang, Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate, J. Build. Eng., vol. 71, pp. 106522, 2023. DOI: 10.1016/j.jobe.2023.106522.
  • N. Sun, X. Yao, J. Liu, J. Li, N. Yang, G. Zhao, and C. Dai, Breakup and coalescence mechanism of high-stability bubbles reinforced by dispersed particle gel particles in the pore-throat micromodel, Geoenergy Sci. Eng., vol. 223, pp. 211513, 2023. DOI: 10.1016/j.geoen.2023.211513.
  • R. Bahaadini and A.R. Saidi, On the stability of spinning thin-walled porous beams, Thin. Walled Struct., vol. 132, pp. 604–615, 2018. DOI: 10.1016/j.tws.2018.09.022.
  • Y. Dong, L. He, L. Wang, Y. Li, and J. Yang, Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study, Aerosp. Sci. Technol., vol. 82–83, pp. 466–478, 2018. DOI: 10.1016/j.ast.2018.09.037.
  • Y.Q. Wang and Z. Yang, Nonlinear vibrations of moving functionally graded plates containing porosities and contacting with liquid: Internal resonance, Nonlinear Dyn., vol. 90, no. 2, pp. 1461–1480, 2017. DOI: 10.1007/s11071-017-3739-z.
  • Y.Q. Wang, Y.H. Wan, and Y.F. Zhang, Vibrations of longitudinally traveling functionally graded material plates with porosities, Eur. J. Mech.-A/Solids., vol. 66, pp. 55–68, 2017. DOI: 10.1016/j.euromechsol.2017.06.006.
  • M. Ganapathi, B. Anirudh, C. Anant, and O. Polit, Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect, Mech. Adv. Mater. Struct., vol. 28, no. 7, pp. 741–752, 2021. DOI: 10.1080/15376494.2019.1601310.
  • ŞD. Akbaş, S. Dastjerdi, B. Akgöz, and Ö. Civalek, Dynamic analysis of functionally graded porous microbeams under moving load, Transp. Porous Med., vol. 142, no. 1–2, pp. 209–227, 2022. DOI: 10.1007/s11242-021-01686-z.
  • S. Singh and S. Harsha, Thermal buckling of porous symmetric and non-symmetric sandwich plate with homogenous core and S-FGM face sheets resting on Pasternak foundation, Int. J. Mech. Mater. Des., vol. 16, no. 4, pp. 707–731, 2020. DOI: 10.1007/s10999-020-09498-7.
  • Y. Yang, B. Lin, and W. Zhang, Experimental and numerical investigation of an arch–beam joint for an arch bridge, Archiv. Civ. Mech. Eng., vol. 23, no. 2, pp. 101, 2023. DOI: 10.1007/s43452-023-00645-3.
  • V. Borjalilou and M. Asghari, Size-dependent analysis of thermoelastic damping in electrically actuated microbeams, Mech. Adv. Mater. Struct., vol. 28, no. 9, pp. 952–962, 2021. DOI: 10.1080/15376494.2019.1614700.
  • K. Rashvand, A. Alibeigloo, and M. Safarpour, Free vibration and instability analysis of a viscoelastic micro-shell conveying viscous fluid based on modified couple stress theory in thermal environment, Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1198–1236, 2022. DOI: 10.1080/15397734.2020.1745079.
  • M. Şimşek, Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach, Int. J. Eng. Sci., vol. 105, pp. 12–27, 2016. DOI: 10.1016/j.ijengsci.2016.04.013.
  • Y. Yao, H. Huang, W. Zhang, Y. Ye, L. Xin, and Y. Liu, Seismic performance of steel-PEC spliced frame beam, J. Constr. Steel Res., vol. 197, pp. 107456, 2022. DOI: 10.1016/j.jcsr.2022.107456.
  • H. Sarparast, A. Alibeigloo, V. Borjalilou, and O. Koochakianfard, Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects, Archiv. Civ. Mech. Eng., vol. 22, no. 4, pp. 1–28, 2022. DOI: 10.1007/s43452-022-00489-3.
  • M. Wu, Z. Ba, J. Liang, A procedure for 3D simulation of seismic wave propagation considering source# path#site effects: Theory, verification and application, Earthquake Engineering & Structural Dynamics, vol. 51, no. 12, pp. 2925–2955, 2022. DOI: 10.1002/eqe.3708
  • A.E. Ebrahimi-Mamaghani, S. Khadem, and S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink, Nonlinear Dyn., vol. 86, no. 3, pp. 1761–1795, 2016. DOI: 10.1007/s11071-016-2992-x.
  • C. Luo, L. Wang, Y. Xie, and B. Chen, A new conjugate gradient method for moving force identification of vehicle–bridge system, J. Vib. Eng. Technol., vol. 11, pp. 1–18, 2022. DOI: 10.1007/s42417-022-00824-1.
  • Q. Fu, M. Gu, J. Yuan, and Y. Lin, Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway, Buildings., vol. 12, no. 11, pp. 1982, 2022. DOI: 10.3390/buildings12111982.
  • A. Ebrahimi-Mamaghani, N. Mostoufi, R. Sotudeh-Gharebagh, and R. Zarghami, Vibrational analysis of pipes based on the drift-flux two-phase flow model, Ocean Eng., vol. 249, pp. 110917, 2022. DOI: 10.1016/j.oceaneng.2022.110917.
  • X. Bai, H. Shi, K. Zhang, X. Zhang, and Y. Wu, Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system, Journal of Sound and Vibration, vol. 529, pp. 116967, 2022. DOI: 10.1016/j.jsv.2022.116967
  • C. Zhang, The active rotary inertia driver system for flutter vibration control of bridges and various promising applications, Sci. China Technol. Sci., vol. 66, no. 2, pp. 390–405, 2023. DOI: 10.1007/s11431-022-2228-0.
  • A. Ebrahimi-Mamaghani, R. Sotudeh-Gharebagh, R. Zarghami, and N. Mostoufi, Dynamics of two-phase flow in vertical pipes, J. Fluids Struct., vol. 87, pp. 150–173, 2019. DOI: 10.1016/j.jfluidstructs.2019.03.010.
  • R.-B. Hao, Z.-Q. Lu, H. Ding, and L.-Q. Chen, Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis, Int. J. Mech. Sci., vol. 222, pp. 107237, 2022. DOI: 10.1016/j.ijmecsci.2022.107237.
  • W. Sun, H. Wang, and R. Qu, A novel data generation and quantitative characterization method of motor static eccentricity with adversarial network, IEEE Trans. Power Electron., vol. 38, no. 7, pp. 8027–8032, 2023. DOI: 10.1109/TPEL.2023.3267883.
  • D. Chen, Q. Wang, Y. Li, Y. Li, H. Zhou, and Y. Fan, A general linear free energy relationship for predicting partition coefficients of neutral organic compounds, Chemosphere., vol. 247, pp. 125869, 2020. DOI: 10.1016/j.chemosphere.2020.125869.
  • M.A. Kazemi-Lari, S.A. Fazelzadeh, and E. Ghavanloo, Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation, Physica E., vol. 44, no. 7–8, pp. 1623–1630, 2012. DOI: 10.1016/j.physe.2012.04.007.
  • A. Karimi-Nobandegani, S. Fazelzadeh, and E. Ghavanloo, Flutter instability of cracked rotating non-uniform beams subjected to distributed follower force, Int. J. Str. Stab. Dyn., vol. 18, no. 01, pp. 1850001, 2018. DOI: 10.1142/S0219455418500013.
  • J. Banerjee and H. Su, Dynamic stiffness formulation and free vibration analysis of a spinning composite beam, Comput. Struct., vol. 84, no. 19–20, pp. 1208–1214, 2006. DOI: 10.1016/j.compstruc.2006.01.023.
  • T. Yang, B. Fang, X.-D. Yang, and Y. Li, Closed-form approximate solution for natural frequency of axially moving beams, Int. J. Mech. Sci., vol. 74, pp. 154–160, 2013. DOI: 10.1016/j.ijmecsci.2013.05.010.
  • A.E. Alshorbagy, M. Eltaher, and F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method, Appl. Math. Modell., vol. 35, no. 1, pp. 412–425, 2011. DOI: 10.1016/j.apm.2010.07.006.
  • M.R. Barati, Magneto-hygro-thermal vibration behavior of elastically coupled nanoplate systems incorporating nonlocal and strain gradient effects, J. Braz. Soc. Mech. Sci. Eng., vol. 39, no. 11, pp. 4335–4352, 2017. DOI: 10.1007/s40430-017-0890-x.
  • A.M. Zenkour and I.A. Abbas, Magneto-thermoelastic response of an infinite functionally graded cylinder using the finite element method, J. Vib. Control., vol. 20, no. 12, pp. 1907–1919, 2014. DOI: 10.1177/1077546313480541.
  • G.-L. She, Y.-R. Ren, F.-G. Yuan, and W.-S. Xiao, On vibrations of porous nanotubes, Int. J. Eng. Sci., vol. 125, pp. 23–35, 2018. DOI: 10.1016/j.ijengsci.2017.12.009.
  • N. Shafiei, S.S. Mirjavadi, B. MohaselAfshari, S. Rabby, and M. Kazemi, Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams, Comput. Methods Appl. Mech. Eng., vol. 322, pp. 615–632, 2017. DOI: 10.1016/j.cma.2017.05.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.