368
Views
2
CrossRef citations to date
0
Altmetric
Articles

Vibration characteristics of cracked FG-GRC plates in thermal environments based on phase field theory and meshless method

&
Pages 6657-6679 | Received 24 Nov 2021, Accepted 24 Feb 2022, Published online: 09 Mar 2022
 

Abstract

Stiffness degradation resulting from matrix cracking has a great impact on the vibrational behaviors of composite laminates. However, the vibration frequencies of functionally graded graphene-reinforced composite (FG-GRC) plates with crack defects remain largely unexplored. In this paper, the variational phase field theory is implemented to investigate the vibration characteristics of cracked FG-GRC plates subjected to thermal conditions. The effective elastic constants depending on the temperature of FG-GRC plates are characterized by the extended Halpin-Tsai model. The first-order shear deformation theory (FSDT) is employed to describe the displacement fields of the cracked FG-GRC plates. The meshfree kernel particle method is engaged to discretize governing equations over the computational domain and then the obtained governing eigen-equations are calculated using the Ritz methodology. The numerical results illustrate the influences of crack length, crack number, the strength of foundations, graphene distribution, temperature variation and geometric values on the vibration fundamental frequencies of the FG-GRC plates. The present work not only provides an alternative and feasible approach for solving the interaction problems between cracking and vibration, but also makes significant advances to characterize the vibrational behaviors of cracked functionally graded materials for engineering applications.

Additional information

Funding

The research described in this paper was financially supported by the National Natural Science Foundation of China (Grant no. 12172130), Natural Science Foundation of Jiangxi Province (20202ACB211002), Primary Research & Development Plan of Jiangxi Province of China (20212BBE53016).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 643.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.