368
Views
2
CrossRef citations to date
0
Altmetric
Articles

Vibration characteristics of cracked FG-GRC plates in thermal environments based on phase field theory and meshless method

&
Pages 6657-6679 | Received 24 Nov 2021, Accepted 24 Feb 2022, Published online: 09 Mar 2022

References

  • Asadi, H. 2017. Numerical simulation of the fluid-solid interaction for CNT reinforced functionally graded cylindrical shells in thermal environments. Acta Astronautica 138:214–24. doi:10.1016/j.actaastro.2017.05.039.
  • Borden, M. J., C. V. Verhoosel, M. A. Scott, T. J. Hughes, and C. A. Landis. 2012. phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering 217-220:77–95. doi:10.1016/j.cma.2012.01.008.
  • Borden, M. J., T. J. Hughes, C. M. Landis, and C. V. Verhoosel. 2014. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering 273:100–18. doi:10.1016/j.cma.2014.01.016.
  • Chakraborty, P., Y. Zhang, and M. R. Tonks. 2016. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method. Computational Materials Science 113:38–52. doi:10.1016/j.commatsci.2015.11.010.
  • Dinachandra, M., and A. Alankar. 2020. A phase-field study of crack propagation and branching in functionally graded materials using explicit dynamics. Theoretical and Applied Fracture Mechanics 109:102681. doi:10.1016/j.tafmec.2020.102681.
  • Doan, D. H., T. Q. Bui, N. D. Duc, and K. Fushinobu. 2016. Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy. Composites Part B: Engineering 99:266–76. doi:10.1016/j.compositesb.2016.06.016.
  • Doan, D. H., T. Q. Bui, T. V. Do, and N. D. Duc. 2017. A rate-dependent hybrid phase field model for dynamic crack propagation. Journal of Applied Physics 122 (11):115102. doi:10.1063/1.4990073.
  • Efraim, E., and M. Eisenberger. 2007. Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. Journal of Sound and Vibration 299 (4-5):720–38. doi:10.1016/j.jsv.2006.06.068.
  • Francfort, G. A., and J.-J. Marigo. 1998. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 46 (8):1319–42. doi:10.1016/S0022-5096(98)00034-9.
  • Ghodrati, H., and R. Ghomashchi. 2019. Effect of graphene dispersion and interfacial bonding on the mechanical properties of metal matrix composites: An overview. FlatChem 16:100113. doi:10.1016/j.flatc.2019.100113.
  • Hoai, N. V., D. H. Doan, N. M. Khoa, T. Van Do, and H. T. Tran. 2019. Phase-field buckling analysis of cracked stiffened functionally graded plates. Composite Structures 217:50–9. doi:10.1016/j.compstruct.2019.03.014.
  • Huang, C., and X. Gao. 2019. Development of a phase field method for modeling brittle and ductile fracture. Computational Materials Science 169:109089. doi:10.1016/j.commatsci.2019.109089.
  • Keleshteri, M. M., H. Asadi, and Q. Wang. 2018. On the snap-through instability of post-buckled FG-CNTRC rectangular plates with integrated piezoelectric layers. Computer Methods in Applied Mechanics and Engineering 331:53–71. doi:10.1016/j.cma.2017.11.015.
  • Kiani, Y. 2018. Isogeometric large amplitude free vibration of graphene reinforced laminated plates in thermal environment using NURBS formulation. Computer Methods in Applied Mechanics and Engineering 332:86–101. doi:10.1016/j.cma.2017.12.015.
  • Kiani, Y. 2018. NURBS-based isogeometric thermal postbuckling analysis of temperature dependent graphene reinforced composite laminated plates. Thin-Walled Structures 125:211–9. doi:10.1016/j.tws.2018.01.024.
  • Kiani, Y. 2019. Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Composites Part B: Engineering 156:128–37. doi:10.1016/j.compositesb.2018.08.052.
  • Kiani, Y., and M. Mirzaei. 2018. Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Composite Structures 186:114–22. doi:10.1016/j.compstruct.2017.11.086.
  • Kiani, Y., and M. Mirzaei. 2018. Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerospace Science and Technology 77:388–98. doi:10.1016/j.ast.2018.03.022.
  • Kiani, Y., R. Dimitri, and F. Tornabene. 2018. Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Composites Part B: Engineering 147:169–77. doi:10.1016/j.compositesb.2018.04.028.
  • Kiani, Y., R. Dimitri, and F. Tornabene. 2018. Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures 172:472–82. doi:10.1016/j.engstruct.2018.06.006.
  • Kiendl, J., M. Ambati, L. De Lorenzis, H. Gomez, and A. Reali. 2016. Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering 312:374–94. doi:10.1016/j.cma.2016.09.011.
  • Kolahdouzan, F., A. G. Arani, and M. Abdollahian. 2018. Buckling and free vibration analysis of FG-CNTRC-micro sandwich plate. Steel and Composite Structures 26:273–87.
  • Kumar, P. A. V., A. Dean, J. Reinoso, P. Lenarda, and M. Paggi. 2021. Phase field modeling of fracture in Functionally Graded Materials: Γ-convergence and mechanical insight on the effect of grading. Thin-Walled Structures 159:107234. doi:10.1016/j.tws.2020.107234.
  • Lai, S. K., and L. H. Zhang. 2018. Thermal effect on vibration and buckling analysis of thin isotropic/orthotropic rectangular plates with crack defects. Engineering Structures 177:444–58. doi:10.1016/j.engstruct.2018.07.010.
  • Lei, Z., and L. Tong. 2019. Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells. Steel and Composite Structures 32:687–99.
  • Lei, Z., and Y. Zhang. 2018. Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers. Steel and Composite Structures 28:495–508.
  • Lei, Z., Q. Su, H. Zeng, Y. Zhang, and C. Yu. 2018. Parametric studies on buckling behavior of functionally graded graphene-reinforced composites laminated plates in thermal environment. Composite Structures 202:695–709. doi:10.1016/j.compstruct.2018.03.079.
  • Liew, K. M., Z. Pan, and L.-W. Zhang. 2020. The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy 63 (3):234601. doi:10.1007/s11433-019-1457-2.
  • Liew, K. M., Z. X. Lei, and L. W. Zhang. 2015. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures 120:90–7. doi:10.1016/j.compstruct.2014.09.041.
  • Liu, G., Q. Li, M. A. Msekh, and Z. Zuo. 2016. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Computational Materials Science 121:35–47. doi:10.1016/j.commatsci.2016.04.009.
  • Liu, W. K., S. Jun, S. Li, J. Adee, and T. Belytschko. 1995. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering 38 (10):1655–79. doi:10.1002/nme.1620381005.
  • Martínez-Pañeda, E., and S. Natarajan. 2021. Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials. Defence Technology 17:185–95. doi:10.1016/j.dt.2020.03.004.
  • Miehe, C., M. Hofacker, and F. Welschinger. 2010. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering 199 (45-48):2765–78. doi:10.1016/j.cma.2010.04.011.
  • Minh, P. P., and N. D. Duc. 2019. The effect of cracks on the stability of the functionally graded plates with variable-thickness using HSDT and phase-field theory. Composites Part B: Engineering 175:107086. doi:10.1016/j.compositesb.2019.107086.
  • Mirzaei, M., and Y. Kiani. 2017. Isogeometric thermal buckling analysis of temperature dependent FG graphene reinforced laminated plates using NURBS formulation. Composite Structures 180:606–16. doi:10.1016/j.compstruct.2017.08.057.
  • Natarajan, S., R. K. Annabattula, and E. Martínez-Pañeda. 2019. Phase field modelling of crack propagation in functionally graded materials. Composites Part B: Engineering 169:239–48. doi:10.1016/j.compositesb.2019.04.003.
  • Nazeer, F., Z. Ma, L. Gao, F. Wang, M. A. Khan, and A. Malik. 2019. Thermal and mechanical properties of copper-graphite and copper-reduced graphene oxide composites. Composites Part B: Engineering 163:77–85. doi:10.1016/j.compositesb.2018.11.004.
  • Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. 2004. Electric field effect in atomically thin carbon films. Science (New York, N.Y.) 306 (5696):666–9. doi:10.1126/science.1102896.
  • Novoselov, K. S., D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. 2005. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102 (30):10451–3. doi:10.1073/pnas.0502848102.
  • Potts, J. R., D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff. 2011. Graphene-based polymer nanocomposites. Polymer 52 (1):5–25. doi:10.1016/j.polymer.2010.11.042.
  • Salvo, C., R. V. Mangalaraja, R. Udayabashkar, M. Lopez, and C. Aguilar. 2019. Enhanced mechanical and electrical properties of novel graphene reinforced copper matrix composites. Journal of Alloys and Compounds 777:309–16. doi:10.1016/j.jallcom.2018.10.357.
  • Shao, Y., Q. Duan, and S. Qiu. 2021. Adaptive analysis for phase-field model of brittle fracture of functionally graded materials. Engineering Fracture Mechanics 251:107783. doi:10.1016/j.engfracmech.2021.107783.
  • Shen, H.-S. 2009. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures 91 (1):9–19. doi:10.1016/j.compstruct.2009.04.026.
  • Shen, H.-S., Y. Xiang, and F. Lin. 2017. Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Composite Structures 170:80–90. doi:10.1016/j.compstruct.2017.03.001.
  • Shen, H.-S., Y. Xiang, Y. Fan, and D. Hui. 2018. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering 136:177–86. doi:10.1016/j.compositesb.2017.10.032.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016a. Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Composite Structures 158:92–100. doi:10.1016/j.compstruct.2016.09.031.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016b. Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. International Journal of Mechanical Sciences 105:90–101. doi:10.1016/j.ijmecsci.2015.11.019.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016c. Aeroelastic analysis of CNT reinforced functionally graded composite panels in supersonic airflow using a higher-order shear deformation theory. Composite Structures 141:79–90. doi:10.1016/j.compstruct.2016.01.005.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016d. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences 115-116:339–47. doi:10.1016/j.ijmecsci.2016.06.020.
  • Soni, S.,. N. K. Jain, and P. V. Joshi. 2018. Vibration analysis of partially cracked plate submerged in fluid. Journal of Sound and Vibration 412:28–57. doi:10.1016/j.jsv.2017.09.016.
  • Stankovich, S.,. D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff. 2006. Graphene-based composite materials. Nature 442 (7100):282–6. doi:10.1038/nature04969.
  • Tu, C., L. Hong, T. Song, X. Li, Q. Dou, Y. Ding, T. Liao, S. Zhang, G. Gao, Z. Wang, et al. 2019. Superior mechanical properties of sulfonated graphene reinforced carbon-graphite composites. Carbon 148:378–86. doi:10.1016/j.carbon.2019.04.001.
  • Van Do, T., D. H. Doan, N. D. Duc, and T. Q. Bui. 2017. Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface. Composite Structures 182:542–8. doi:10.1016/j.compstruct.2017.09.059.
  • Wang, Z.-X., and H.-S. Shen. 2011. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Computational Materials Science 50 (8):2319–30. doi:10.1016/j.commatsci.2011.03.005.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2013. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science 71:201–8. doi:10.1016/j.commatsci.2013.01.028.
  • Wu, H., S. Kitipornchai, and J. Yang. 2018. Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections. Steel and Composite Structures 29:319–32.
  • Wu, Q., D-j Xie, Y-d Zhang, Z-m Jia, and H-z Zhang. 2019. Mechanical properties and simulation of nanographene/polyvinylidene fluoride composite films. Composites Part B: Engineering 156:148–55. doi:10.1016/j.compositesb.2018.08.061.
  • Xia, L., D. Da, and J. Yvonnet. 2018. Topology optimization for maximizing the fracture resistance of quasi-brittle composites. Computer Methods in Applied Mechanics and Engineering 332:234–54. doi:10.1016/j.cma.2017.12.021.
  • Xu, Z., and Q. Huang. 2019. Vibro-acoustic analysis of functionally graded graphene-reinforced nanocomposite laminated plates under thermal-mechanical loads. Engineering Structures 186:345–55. doi:10.1016/j.engstruct.2019.01.137.
  • Yan, J.-W., C. Hu, K. Chen, and Q.-B. Lin. 2019. Release of graphene from graphene-polyethylene composite films into food simulants. Food Packaging and Shelf Life 20:100310. doi:10.1016/j.fpsl.2019.100310.
  • Yang, J., J. Dong, and S. Kitipornchai. 2019. Unilateral and bilateral buckling of functionally graded corrugated thin plates reinforced with graphene nanoplatelets. Composite Structures 209:789–801. doi:10.1016/j.compstruct.2018.11.025.
  • Yin, B., and L. Zhang. 2019. Phase field method for simulating the brittle fracture of fiber reinforced composites. Engineering Fracture Mechanics 211:321–40. doi:10.1016/j.engfracmech.2019.02.033.
  • Zhang, L., K. Liew, and J. Reddy. 2016. Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates. Computer Methods in Applied Mechanics and Engineering 300:593–610. doi:10.1016/j.cma.2015.11.030.
  • Zhang, L., Z. Song, and K. Liew. 2017. Modeling aerothermoelastic properties and active flutter control of nanocomposite cylindrical shells in supersonic airflow under thermal environments. Computer Methods in Applied Mechanics and Engineering 325:416–33. doi:10.1016/j.cma.2017.07.014.
  • Zhou, S., X. Zhuang, H. Zhu, and T. Rabczuk. 2018. Phase field modelling of crack propagation, branching and coalescence in rocks. Theoretical and Applied Fracture Mechanics 96:174–92. doi:10.1016/j.tafmec.2018.04.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.