452
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of Potential Toxicity from Co-Exposure to Three CNS Depressants (Toluene, Ethylbenzene, and Xylene) Under Resting and Working Conditions Using PBPK Modeling

, , , , &
Pages 127-135 | Published online: 17 Aug 2010
 

Abstract

Under OSHA and American Conference of Governmental Industrial Hygienists (ACGIH®) guidelines, the mixture formula (unity calculation) provides a method for evaluating exposures to mixtures of chemicals that cause similar toxicities. According to the formula, if exposures are reduced in proportion to the number of chemicals and their respective exposure limits, the overall exposure is acceptable. This approach assumes that responses are additive, which is not the case when pharmacokinetic interactions occur. To determine the validity of the additivity assumption, we performed unity calculations for a variety of exposures to toluene, ethylbenzene, and/or xylene using the concentration of each chemical in blood in the calculation instead of the inhaled concentration. The blood concentrations were predicted using a validated physiologically based pharmacokinetic (PBPK) model to allow exploration of a variety of exposure scenarios. In addition, the Occupational Safety and Health Administration and ACGIH® occupational exposure limits were largely based on studies of humans or animals that were resting during exposure. The PBPK model was also used to determine the increased concentration of chemicals in the blood when employees were exercising or performing manual work. At rest, a modest overexposure occurs due to pharmacokinetic interactions when exposure is equal to levels where a unity calculation is 1.0 based on threshold limit values (TLVs®). Under work load, however, internal exposure was 87% higher than provided by the TLVs. When exposures were controlled by a unity calculation based on permissible exposure limits (PELs), internal exposure was 2.9 and 4.6 times the exposures at the TLVs at rest and workload, respectively. If exposure was equal to PELs outright, internal exposure was 12.5 and 16 times the exposure at the TLVs at rest and workload, respectively. These analyses indicate the importance of Citation (1) selecting appropriate exposure limits, Citation (2) performing unity calculations, and Citation (3) considering the effect of work load on internal doses, and they illustrate the utility of PBPK modeling in occupational health risk assessment.

Acknowledgments

Details on the original modeling by Kannan Krishnan at the University of Montreal, assistance with figures by Som Lohitnavy, and manuscript review by Jeanne Nasci is gratefully appreciated.

This study was supported in part by a Cooperative Agreement from ATSDR (U61/ATU 881475) and NIEHS Quantitative Toxicology Training Grant (T32 ES07321).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.