383
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Performance evaluation of disposable inhalable aerosol sampler at a copper electrorefinery

, , , , , & show all
Pages 250-257 | Published online: 22 Feb 2019
 

Abstract

This study evaluates the performance of the disposable inhalable aerosol sampler (DIAS), a new sampler developed to be more cost-effective than the traditional inhalable particle samplers and comparable to the inhalable particle sampling convention. Forty-eight pairs of the DIAS prototype and the IOM sampler were utilized to collect copper exposure measurements (23 personal and 25 area) at an electrorefinery facility. The geometric mean (GM) value of ratios of exposure data (DIAS/IOM) was 1.1, while the GM of ratios (DIAS/IOM) was 1.6 for the area exposure data, revealing 84% of the ratios were greater than one. For both personal and area exposure data, the concordance correlation coefficient tests revealed significant disagreements between the two types of samplers and suggested precision as the source of the disagreement. The estimated mean concentration was higher for the DIAS compared that for the IOM for the area exposure data (p < 0.05), while the results were comparable for the personal exposure data (p = 0.49). Overall, the DIAS generated higher exposure results compared to the IOM sampler for the area exposures. For the personal exposures, the findings were inconclusive due to inconsistent results of factors aforementioned. This study is limited to one metal component (copper) of the dust at a worksite. To date, this is the first field evaluation using personal exposure data to test the performance of the DIAS and the second evaluation using area exposure data. Thus, it will be necessary to conduct additional field evaluations with various elements to further evaluate the performance of the DIAS. In addition, particle migration to the internal walls of the cap was observed during the transportation of collected samples to a laboratory for both sampler types (6.4% for the DIAS and 7.4% for the IOM). Occupational health and safety professionals should be aware of potential errors caused from transferring samples from a field to a laboratory and should be careful not to exclude particles collected on the caps.

Acknowledgments

The authors are sincerely thankful to Dr. Alan S. Echt (NIOSH/Division of Applied Research & Technology) and Mr. Randy Boylstein (NIOH/Respiratory Health Division) for reviewing this manuscript prior to journal submission. The authors also would like to offer special thanks to the employees who participated in our study.

Additional information

Funding

This project was funded internally by the National Institute for Occupational Safety and Health (Project CAN number: 939ZXEY).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 148.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.