370
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations

&
Pages 94-122 | Received 16 Feb 2020, Accepted 09 Apr 2020, Published online: 13 May 2020
 

ABSTRACT

Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.

Declaration of interest statement

The authors declared that they had no interest conflict.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China [Grant No. 51825601, 51676108].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.