370
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations

&
Pages 94-122 | Received 16 Feb 2020, Accepted 09 Apr 2020, Published online: 13 May 2020

References

  • D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys., vol. 61, no. 1, pp. 41–73, 1989. DOI: 10.1103/RevModPhys.61.41.
  • B. Straughan, Heat Waves. Springer Science & Business Media, New York, 2011.
  • M. Ozisik and D. Tzou, “On the wave theory in heat conduction,” J. Heat Transfer, vol. 116, no. 3, pp. 526–535, 1994. DOI: 10.1115/1.2910903.
  • T. Shimazaki, M. Murakami, and T. Iida, “Second sound wave heat transfer, thermal boundary layer formation and boiling: Highly transient heat transport phenomena in He II,” Cryogenics, vol. 35, no. 10, pp. 645–651, 1995. DOI: 10.1016/S0011-2275(99)80005-8.
  • J. P. Chu and W. Hsin-Sen, “Propagation and reflection of thermal waves in a rectangular plate,” Numer. Heat Transfer Part A: Appl., vol. 36, no. 1, pp. 51–74, 1999. DOI: 10.1080/104077899274895.
  • W. B. Lor and H. S. Chu, “Propagation of thermal waves in a composite medium with interface thermal boundary resistance,” Numer. Heat Transfer Part A: Appl., vol. 36, no. 7, pp. 681–697, 1999. DOI: 10.1080/104077899274516.
  • W. B. Lor and H. S. Chu, “Effect of interface thermal resistance on heat transfer in a composite medium using the thermal wave model,” Int. J. Heat Mass Transf., vol. 43, no. 5, pp. 653–663, 2000. DOI: 10.1016/S0017-9310(99)00178-7.
  • B. Shen and P. Zhang, “Notable physical anomalies manifested in non-Fourier heat conduction under the dual-phase-lag model,” Int. J. Heat Mass Transf., vol. 51, no. 7–8, pp. 1713–1727, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.07.039.
  • M. Al-Nimr, M. Naji, and S. Al-Wardat, “Overshooting phenomenon in the hyperbolic heat conduction model,” Jpn. J. Appl. Phys., vol. 42, no. 8R, pp. 5383, 2003. DOI: 10.1143/JJAP.42.5383.
  • M. Xu, J. Guo, L. Wang, and L. Cheng, “Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction,” Int. J. Therm. Sci., vol. 50, no. 5, pp. 825–830, 2011. DOI: 10.1016/j.ijthermalsci.2010.12.006.
  • M. Özişik and B. Vick, “Propagation and reflection of thermal waves in a finite medium,” Int. J. Heat Mass Transf., vol. 27, no. 10, pp. 1845–1854, 1984. DOI: 10.1016/0017-9310(84)90166-2.
  • D. Y. Tzou, “Reflection and refraction of thermal waves from a surface or an interface between dissimilar materials,” Int. J. Heat Mass Transf., vol. 36, no. 2, pp. 401–410, 1993. DOI: 10.1016/0017-9310(93)80016-N.
  • B. D. Nie and B. Y. Cao, “Reflection and refraction of a thermal wave at an ideal interface,” Int. J. Heat Mass Transf., vol. 116, pp. 314–328, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.043.
  • J. C. Maxwell, “IV. On the dynamical theory of gases,” Philos. Trans. R. Soc. London, vol. 157, pp. 49–88, 1867.
  • W. Nernst, Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes,  Knapp, Halle, 1917.
  • L. Onsager, “Reciprocal relations in irreversible processes. II,” Phys. Rev., vol. 38, no. 12, pp. 2265–2279, 1931. DOI: 10.1103/PhysRev.38.2265.
  • S. N. Li and B. Y. Cao, “Anomalous heat diffusion from fractional Fokker-Planck equation,” Appl. Math. Lett., vol. 99, pp. 105992, 2020. DOI: 10.1016/j.aml.2019.07.023.
  • Y. C. Hua, H. L. Li, and B. Y. Cao, “Thermal spreading resistance in ballistic-diffusive regime in GaN HEMTs,” IEEE Trans. Electron. Devices, vol. 66, no. 8, pp. 3296–3301, 2019. DOI: 10.1109/TED.2019.2922221.
  • L. Tisza, “Sur la Supraconductibilit e thermique de l’helium II liquide et la statistique de Bose-Einstein,” CR Acad. Sci., vol. 207, pp. 1035, 1938.
  • L. Landau, “Theory of the superfluidity of helium II,” Phys. Rev., vol. 60, no. 4, pp. 356–358, 1941. DOI: 10.1103/PhysRev.60.356.
  • V. Peshkov, “Second sound in helium,” J. Phys., vol. 8, no. 1-6, pp. 381, 1944.
  • M. Chester, “Second sound in solids,” Phys. Rev., vol. 131, no. 5, pp. 2013–2015, 1963. DOI: 10.1103/PhysRev.131.2013.
  • C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A. Guyer, “Second sound in solid helium,” Phys. Rev. Lett., vol. 16, no. 18, pp. 789–791, 1966. DOI: 10.1103/PhysRevLett.16.789.
  • T. McNelly, et al. “Heat pulses in NaF: Onset of second sound,” Phys. Rev. Lett., vol. 24, no. 3, pp. 100, 1970. DOI: 10.1103/PhysRevLett.24.100.
  • H. E. Jackson, C. T. Walker, and T. F. McNelly, “Second sound in NaF,” Phys. Rev. Lett., vol. 25, no. 1, pp. 26, 1970. DOI: 10.1103/PhysRevLett.25.26.
  • V. Narayanamurti and R. Dynes, “Observation of second sound in bismuth,” Phys. Rev. Lett., vol. 28, no. 22, pp. 1461, 1972. DOI: 10.1103/PhysRevLett.28.1461.
  • C. Cattaneo, “Sulla conduzione del calore,” Atti. Sem. Mat. Fis. Univ. Modena, vol. 3, pp. 83–101, 1948.
  • P. Vernotte, “Paradoxes in the continuous theory of the heat equation,” CR Acad. Sci., vol. 246, pp. 154–3, 1958.
  • D. Y. Tzou, “The generalized lagging response in small-scale and high-rate heating,” Int. J. Heat Mass Transf., vol. 38, no. 17, pp. 3231–3240, 1995. DOI: 10.1016/0017-9310(95)00052-B.
  • D. Y. Tzou, “Experimental support for the lagging behavior in heat propagation,” J. Thermophys. Heat Transfer, vol. 9, no. 4, pp. 686–693, 1995. DOI: 10.2514/3.725.
  • R. A. Guyer and J. A. Krumhansl, “Solution of the linearized phonon Boltzmann equation,” Phys. Rev., vol. 148, no. 2, pp. 766–778, 1966. DOI: 10.1103/PhysRev.148.766.
  • R. A. Guyer and J. A. Krumhansl, “Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals,” Phys. Rev., vol. 148, no. 2, pp. 778–788, 1966. DOI: 10.1103/PhysRev.148.778.
  • M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Ration. Mech. Anal., vol. 31, no. 2, pp. 113–126, 1968. DOI: 10.1007/BF00281373.
  • B. Y. Cao and Z. Y. Guo, “Equation of motion of a phonon gas and non-Fourier heat conduction,” J. Appl. Phys., vol. 102, no. 5, pp. 053503, 2007. DOI: 10.1063/1.2775215.
  • B. Y. Cao, Y. Dong, and Z. Y. Guo, “Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics,” J. Appl. Phys., vol. 110, no. 6, pp. 063504, 2011. DOI: 10.1063/1.3634113
  • Z. Y. Guo, “Energy-mass duality of heat and its applications,” ES Energy Environ., vol. 1, pp. 4–15, 2018.
  • G. Chen, “Ballistic-diffusive equations for transient heat conduction from nano to macroscales,” J. Heat Transfer, vol. 124, no. 2, pp. 320–328, 2002. DOI: 10.1115/1.1447938.
  • Y. C. Hua, Y. Dong, and B. Y. Cao, “Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm,” Acta Physica Sinica, vol. 78, pp. 755–759, 2013.
  • Y. C. Hua and B. Y. Cao, “Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations,” Int. J. Heat Mass Transf., vol. 78, pp. 755–759, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.07.037.
  • D. S. Tang, Y. C. Hua, B. D. Nie, and B. Y. Cao, “Phonon wave propagation in ballistic-diffusive regime,” J. Appl. Phys., vol. 119, pp. 124301, 2016.
  • D. S. Tang and B. Y. Cao, “Ballistic thermal wave propagation along nanowires modeled using phonon Monte Carlo simulations,” Appl. Therm. Eng., vol. 117, pp. 609–616, 2017. DOI: 10.1016/j.applthermaleng.2017.02.078.
  • B. Y. Cao and D. S. Tang, “Superballistic characteristics in transient phonon ballistic-diffusive transport,” Appl. Phys. Lett., vol. 111, no. 11, pp. 113109, 2017.DOI: 10.1063/1.5003639
  • D. S. Tang, Y. C. Hua, and B. Y. Cao, “Thermal wave propagation through nanofilms in ballistic-diffusive regime by Monte Carlo simulations,” Int. J. Therm. Sci., vol. 109, pp. 81–89, 2016. DOI: 10.1016/j.ijthermalsci.2016.05.030.
  • S. Lee, D. Broido, K. Esfarjani, and G. Chen, “Hydrodynamic phonon transport in suspended graphene,” Nat. Commun., vol. 6, pp. 6290, Feb. 18 2015. DOI: 10.1038/ncomms7290.
  • A. Cepellotti, et al., “Phonon hydrodynamics in two-dimensional materials,” Nat. Commun., vol. 6, no. 1, pp. 6400, Mar. 6 2015. DOI: 10.1038/ncomms7400.
  • B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt, and A. D. Mirlin, “Hydrodynamics in graphene: Linear-response transport,” Phys. Rev. B, vol. 91, no. 3, 2015. DOI: 10.1103/PhysRevB.91.035414.
  • Y. Guo and M. Wang, “Phonon hydrodynamics and its applications in nanoscale heat transport,” Phys. Rep., vol. 595, pp. 1–44, 2015. DOI: 10.1016/j.physrep.2015.07.003.
  • S. Lee and L. Lindsay, “Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube,” Phys. Rev. B, vol. 95, no. 18, 2017. DOI: 10.1103/PhysRevB.95.184304.
  • X. Li and S. Lee, “Role of hydrodynamic viscosity on phonon transport in suspended graphene,” Phys. Rev. B, vol. 97, no. 9, pp. 094309, 2018.DOI: 10.1103/PhysRevB.97.094309
  • X. Li and S. Lee, “Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene,” Phys. Rev. B, vol. 99, no. 8, pp. 085202, 2019.DOI: 10.1103/PhysRevB.99.085202
  • X. L. Sangyeop Lee, „Hydrodynamic Phonon Transport Past, Present, and Prospect. preprint arXiv:1903.05731,2019.
  • S. Huberman, et al. “Observation of second sound in graphite at temperatures above 100 K,” Science, vol. 364, no. 6438, pp. 375–379, 2019. DOI: 10.1126/science.aav3548.
  • W. J. Yao and B. Y. Cao, “Thermal wave propagation in graphene studied by molecular dynamics simulations,” Chin. Sci. Bull., vol. 59, no. 27, pp. 3495–3503, 2014. DOI: 10.1007/s11434-014-0472-6.
  • D. Lacroix, K. Joulain, and D. Lemonnier, “Monte Carlo transient phonon transport in silicon and germanium at nanoscales,” Phys. Rev. B, vol. 72, no. 6, 2005. DOI: 10.1103/PhysRevB.72.064305.
  • M. S. Jeng, R. Yang, D. Song, and G. Chen, “Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation,” J. Heat Transfer, vol. 130, no. 4, pp. 042410, 2008. DOI: 10.1115/1.2818765.
  • Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, “Monte Carlo simulation of silicon nanowire thermal conductivity,” J. Heat Transfer, vol. 127, no. 10, pp. 1129–1137, 2005. DOI: 10.1115/1.2035114.
  • Q. Hao, G. Chen, and M. S. Jeng, “Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores,” J. Appl. Phys., vol. 106, no. 11, pp.114321, 2009. DOI: 10.1063/1.3266169.
  • S. Mazumder and A. Majumdar, “Monte Carlo study of phonon transport in solid thin films including dispersion and polarization,” J. Heat Transfer, vol. 123, no. 4, pp. 749–759, 2001. DOI: 10.1115/1.1377018.
  • J. P. M. Péraud and N. G. Hadjiconstantinou, “Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations,” Phys. Rev. B, vol. 84, no. 20, 2011. DOI: 10.1103/PhysRevB.84.205331.
  • H. McGaughey and A. Jain, “Nanostructure thermal conductivity prediction by Monte Carlo sampling of phonon free paths,” Appl. Phys. Lett., vol. 100, no. 6, pp.061911, 2012. DOI: 10.1063/1.3683539.
  • J. P. M. Péraud, C. D. Landon, and N. G. Hadjiconstantinou, “Monte Carlo methods for solving the Boltzmann transport equation,” Annu. Rev. Heat Transfer, vol. 17, pp. 205–265, 2014. DOI: 10.1615/AnnualRevHeatTransfer.2014007381.
  • L. Ma, R. Mei, X. Zhao, and H. Sun, “Monte Carlo simulation of single-crystalline PbSe nanowire thermal conductivity using first-principle phonon properties,” Semicond. Sci. Technol., vol. 32, no. 9, pp.095008, 2017. DOI: 10.1088/1361-6641/aa7c15.
  • S. Lee, X. Li, and R. Guo, “Thermal resistance by transition between collective and non-collective phonon flows in graphitic materials,” Nanoscale Microscale Thermophys. Eng., vol. 23, no. 3, pp. 247–258, 2019. DOI: 10.1080/15567265.2019.1575497.
  • L. Lindsay, C. Hua, X. L. Ruan, and S. Lee, “Survey of ab initio phonon thermal transport,” Mater. Today Phys., vol. 7, pp. 106–120, 2018. DOI: 10.1016/j.mtphys.2018.11.008.
  • J. Callaway, “Model for Lattice Thermal Conductivity at Low Temperatures,” Phys. Rev., vol. 113, no. 4, pp. 1046–1051, 1959. DOI: 10.1103/PhysRev.113.1046.
  • Y. Guo and M. Wang, “Heat transport in two-dimensional materials by directly solving the phonon Boltzmann equation under Callaway’s dual relaxation model,” Phys. Rev. B, vol. 96, no. 13, 2017. DOI: 10.1103/PhysRevB.96.134312.
  • R. J. Hardy, “Phonon Boltzmann equation and second sound in solids,” Phys. Rev. B, vol. 2, no. 4, pp. 1193, 1970. DOI: 10.1103/PhysRevB.2.1193.
  • B. D. Nie and B. Y. Cao, “Three mathematical representations and an improved ADI method for hyperbolic heat conduction,” Int. J. Heat Mass Transf., vol. 135, pp. 974–984, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.