461
Views
4
CrossRef citations to date
0
Altmetric
Articles

Metal–organic framework MOF-199-catalyzed direct and one-pot synthesis of thiols, sulfides and disulfides from aryl halides in wet polyethylene glycols (PEG 400)

, &
Pages 572-583 | Received 24 Nov 2016, Accepted 06 May 2017, Published online: 29 May 2017
 

ABSTRACT

A highly porous metal–organic frame work Cu3 BTC2 (copper(II)-benzene-1,3,5-tricarboxylate) that is known as MOF-199 was synthesized from the reaction of 1,3,5-benzenetricarboxylic acid and Cu(OAc)2·H2O by a solvothermal method and characterized by several techniques including FT-IR, XRD, EDX and scanning electron microscopy. The MOF-199 used as an efficient catalyst for one-pot synthesis of thiols by domino reactions of aryl halides and thiourea, and subsequently conversion to aryl alkyl sulfides and diaryl disulfides in polyethylene glycols (PEGs). A variety of aryl alkyl sulfides can be obtained in good to excellent yields in a relatively short reaction time and in the presence of the trace amount of catalyst. Also, the catalyst can be separated from the reaction mixture by decanting, and be reused without significant degradation in catalytic activity.

GRAPHICAL ABSTRACT

Disclosure Statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the Ilam University Research Council.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 683.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.