461
Views
4
CrossRef citations to date
0
Altmetric
Articles

Metal–organic framework MOF-199-catalyzed direct and one-pot synthesis of thiols, sulfides and disulfides from aryl halides in wet polyethylene glycols (PEG 400)

, &
Pages 572-583 | Received 24 Nov 2016, Accepted 06 May 2017, Published online: 29 May 2017

References

  • Cremlyn RJ. An introduction to organosulfur chemistry. Chischester: Wiley; 1996.
  • De Martino G, Edler MC, La Regina G, et al. New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure−activity relationships and molecular modeling studies. J Med Chem. 2006;49:947–954. doi: 10.1021/jm050809s
  • Nielsen SF, Nielsen EQ, Olsen GM, et al. Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3D-QSAR analysis. J Med Chem. 2000;43:2217–2226. doi: 10.1021/jm990973d
  • Liu G, Huth JR, Olejniczak ET, et al. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J Med Chem. 2001;44:1202–1210. doi: 10.1021/jm000503f
  • Akkilagunta VH, Kakulapati RR. Synthesis of unsymmetrical sulfides using ethyl potassium xanthogenate and recyclable copper catalyst under ligand-free conditions. J Org Chem. 2011;76:6819–6824. doi: 10.1021/jo200793k
  • Soleiman-Beigi M, Arzehgar Z. An efficient one-pot method for the direct synthesis of organic disulfides from aryl/alkyl halides in the presence of CuCl using morpholin-4-ium morpholine-4-carbo-dithioate. J Sulfur Chem. 2015;36:395–402. doi: 10.1080/17415993.2015.1031135
  • Xu XB, Liu J, Zhang JJ, et al. Nickel-mediated inter- and intramolecular C–S coupling of thiols and thioacetates with aryl iodides at room temperature. Org Lett. 2013;15:550–553. doi: 10.1021/ol303366u
  • Migita T, Shimizu T, Asami Y, et al. The palladium catalyzed nucleophilic substitution of aryl halides by thiolate anions. Bull Chem Soc Jpn. 1980;53:1385–1389. doi: 10.1246/bcsj.53.1385
  • Fernandez-Rodroeguez MA, Shen Q, Hartwig JF. A general and long-lived catalyst for the palladium-catalyzed coupling of aryl halides with thiols. J Am Chem Soc. 2006;128:2180–2180. doi: 10.1021/ja0580340
  • Taniguchi N. Alkyl- or arylthiolation of aryl iodide via cleavage of the S−S bond of disulfide compound by Nickel Catalyst and Zinc. J Org Chem. 2004;69:6904–6906. doi: 10.1021/jo040184q
  • Wong Y C, Jayanth TT, Cheng CH. Cobalt-catalyzed aryl−sulfur bond formation. Org Lett. 2006;8:5613–5616. doi: 10.1021/ol062344l
  • Chen C, Weng Z, Hartwig J. Synthesis of copper (I) thiolate complexes in the thioetherification of aryl halides. Organometallics. 2012;31:8031–8037. doi: 10.1021/om300711c
  • Wu JR, Lin CH, Lee CF. Iron-catalyzed thioetherification of thiols with aryl iodides. Chem Commun. 2009;0:4450–4452. doi: 10.1039/b907362k
  • Ley SV, Thomas AW. Modern synthetic methods for copper-mediated C(aryl)–O, C(aryl)–N, and C(aryl)–S bond formation. Angew Chem Int Ed. 2003;42:5400–5449. doi: 10.1002/anie.200300594
  • Jimenez-Gonzalez C, Ponder CS, Broxterman QB, et al. Using the right Green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev. 2011;15:912–917. doi: 10.1021/op200097d
  • Khanna L, Khanna P, Panda CS, et al. Synthesis of various S–S linked symmetric bisazaheterocycles: a review. Mini-Rev Org Chem. 2013;10:268–280. doi: 10.2174/1570193X11310030006
  • Ke F, Qu Y, Jiang Z, et al. An efficient copper-catalyzed carbon−sulfur bond formation protocol in water. Org Lett. 2011;13:454–457. doi: 10.1021/ol102784c
  • Li Y, Pu J, Jiang X. A highly efficient Cu-catalyzed S-transfer reaction: from amine to sulfide. Org Lett. 2014;16:2692–2695. doi: 10.1021/ol5009747
  • Yavari I, Ghazanfarpour-Darjani M, Solgi Y. A copper-catalyzed synthesis of symmetrical diarylsulfanes. Synlett. 2014;25:1121–1123. doi: 10.1055/s-0033-1340985
  • Firouzabadi H, Iranpoor N, Gholinejad M. One-pot thioetherification of aryl halides using thiourea and alkyl bromides catalyzed by copper(I) iodide free from foul-smelling thiols in wet polyethylene glycol (PEG 200). Adv Synth Catal. 2010;352:119–124. doi: 10.1002/adsc.200900671
  • Mondal J, Borah P, Modak A, et al. Cu-grafted functionalized mesoporous SBA-15: a novel heterogeneous catalyst for facile one-pot three-component C–S cross-coupling reaction of aryl halides in water. Org Process Res Dev. 2014;18:257–265. doi: 10.1021/op4000994
  • Gholinejad M, Karimi B, Mansouri F. Synthesis and characterization of magnetic copper ferrite nanoparticles and their catalytic performance in one-pot odorless carbon-sulfur bond formation reactions. J Mol Catal A: Chem. 2014;386:20–27. doi: 10.1016/j.molcata.2014.02.006
  • Soleiman-Beigi M, Mohammadi F. A novel copper-catalyzed, one-pot synthesis of symmetric organic disulfides from alkyl and aryl halides: potassium 5-methyl-1,3,4-oxadiazole-2-thiolate as a novel sulfur transfer reagent. Tetrahedron Lett. 2012;53:7028–7030. doi: 10.1016/j.tetlet.2012.10.016
  • Soleiman-Beigi M, Yavari I, Sadeghizadeh F. The direct synthesis of symmetrical disulfides and diselenides by metal–organic framework MOF-199 as an efficient heterogeneous catalyst. RSC Adv. 2015;5:87564–87570. doi: 10.1039/C5RA16879A
  • Soleiman-Beigi M, Mohammadi F. Metal organic framework 199-catalyzed domino sulfur-coupling and transfer reactions: the direct synthesis of symmetric diaryl disulfides from aryl halides. Catal Lett. 2016;146:1497–1504. doi: 10.1007/s10562-016-1768-8
  • Soleiman-Beigi M, Mohammadi F. A novel Nickel-Catalyzed Domino method for the direct synthesis of symmetrical disulfides using potassium 5-methyl-1,3,4-oxadiazole-2-thiolate as a sulfurating reagent. Synlett. 2015;26:911–914. doi: 10.1055/s-0034-1380141
  • Soleiman-Beigi M, Taherinia Z. An efficient one-pot approach to the synthesis of symmetric trithiocarbonates from carbon disulfide and alkyl halides using imidazole. J Sulfur Chem. 2014;35:470–476. doi: 10.1080/17415993.2014.919296
  • Chae HK, Siberio-Perez DY, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature. 2004;427:523–527. doi: 10.1038/nature02311
  • Kuppler RJ, Timmons DJ, Fang Q-R, et al. Potential applications of metal–organic frameworks. Coord Chem Rev. 2009;253:3042–3066. doi: 10.1016/j.ccr.2009.05.019
  • Tranchemontagne DJ, Ni Z, O’Keeffe M, et al. Reticular chemistry of metal–organic polyhedra. Angew Chem Int. Ed. 2008;47:5136–5147. doi: 10.1002/anie.200705008
  • Furukawa H, Ko N, Go YB, et al. Ultrahigh porosity in metal–organic frameworks. Science. 2010;329:424–428. doi: 10.1126/science.1192160
  • Kreno LE, Leong K, Farha OK, et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012;112:1105–1125. doi: 10.1021/cr200324t
  • Rowsell JLC, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73:3–14. doi: 10.1016/j.micromeso.2004.03.034
  • Li Z-Q, Qiu L-G, Xu T, et al. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater Lett. 2009;63:78–80. doi: 10.1016/j.matlet.2008.09.010
  • Li H, Eddaoudi MM, O’Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature. 1999;402:276–279. doi: 10.1038/46248
  • Dhakshinamoorthy A, Asiric AM, Garcia H. Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chem Soc Rev. 2015;44:1922–1947. doi: 10.1039/C4CS00254G
  • Chui SS-Y, Lo SM-F, Charmant JPH, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science. 1999;283:1148–1150. doi: 10.1126/science.283.5405.1148
  • Phan NTS, Le K KA, Phan TD. MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions. Apple Catal A: Gen. 2010;382:246–253. doi: 10.1016/j.apcata.2010.04.053
  • Wang W, Li Y, Zhang R, et al. Metal–organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation. Catal Commun. 2011;12:875–879. doi: 10.1016/j.catcom.2011.02.001
  • Song F, Wang C, Falkowski JM, et al. Isoreticular chiral metal−organic frameworks for asymmetric alkene epoxidation: tuning catalytic activity by controlling framework catenation and varying open channel sizes. J Am Chem Soc. 2010;132:15390–15398. doi: 10.1021/ja1069773
  • Opelt S, Turk S, Dietzsch E, et al. Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catal Commun. 2008;9:1286–1290. doi: 10.1016/j.catcom.2007.11.019
  • Huang Y, Zheng Z, Liu T, et al. Palladium nanoparticles supported on amino functionalized metal–organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catal Commun. 2011;14:27–31. doi: 10.1016/j.catcom.2011.07.004
  • Gascon J, Aktay U, Hernandez-Alonso MD, et al. Amino-based metal–organic frameworks as stable, highly active basic catalysts. J Catal. 2009;261:75–87. doi: 10.1016/j.jcat.2008.11.010
  • Nguyen LT L, Nguyen TT, Nguyen KD, et al. Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-michael reaction. Appl Catal A: Gen. 2012;425-426:44–52. doi: 10.1016/j.apcata.2012.02.045
  • Firouzabadi H, Iranpoor N, Samadi A. One-pot synthesis of aryl alkyl thioethers and diaryl disulfides using carbon disulfide as a sulfur surrogate in the presence of diethylamine catalyzed by copper(I) iodide in polyethylene glycol (PEG200). Tetrahedron Lett. 2014;55:1212–1217. doi: 10.1016/j.tetlet.2014.01.001
  • Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron Lett. 2008;64:8553–8557. doi: 10.1016/j.tet.2008.06.036
  • Britt D, Tranchemontagne D, Yaghi OM. Metal–organic frameworks with high capacity and selectivity for harmful gases. Proc Natl Acad Sci. 2008;105:11623–11627. doi: 10.1073/pnas.0804900105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.