483
Views
38
CrossRef citations to date
0
Altmetric
Original Article

Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation

, , , , , , & show all
Pages 1306-1317 | Received 09 Dec 2015, Accepted 09 Jun 2016, Published online: 15 Jul 2016
 

Abstract

Silver nanoparticles (AgNPs) have been increasingly commercialized and their release into the environment is imminent. Toxicity of AgNP has been studied with a wide spectrum of organisms, yet the mechanism of toxicity remains largely unknown. This study systematically compared toxicity of 10 AgNPs of different particle diameters and coatings to Japanese medaka (Oryzias latipes) larvae to understand how characteristics of AgNP relate to toxicity. Dissolution of AgNPs was largely dependent on particle size, but their aggregation behavior and toxicity were more dependent on coating materials. 96 h lethal concentration 50% (LC50) values correlated with AgNP aggregate size rather than size of individual nanoparticles. Of the AgNPs studied, the dissolved Ag concentration in the test suspensions did not account for all of the observed toxicity, indicating the role of NP-specific characteristics in resultant toxicity. Exposure to AgNP led to decrease of sodium concentration in the tissue and increased expression of Na+/K+ ATPase. Gene expression patterns also suggested that toxicity was related to disruption of sodium regulation and not to oxidative stress.

Declaration of interest

The authors report no conflict of interest. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF or the EPA. This work has not been subjected to USEPA for review and no official endorsement should be inferred.

This paper is based upon work supported by the National Science Foundation (NSF) and the Environmental Protection Agency (EPA) under NSF Cooperative Agreement EF-0830093, Center for the Environmental Implications of NanoTechnology (CEINT).

Supplementary material available online

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.