483
Views
38
CrossRef citations to date
0
Altmetric
Original Article

Silver nanoparticle toxicity is related to coating materials and disruption of sodium concentration regulation

, , , , , , & show all
Pages 1306-1317 | Received 09 Dec 2015, Accepted 09 Jun 2016, Published online: 15 Jul 2016

References

  • Ahn J-M, Eom H-J, Yang X, Meyer JN, Choi J. 2014. Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 108:343–52
  • Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, et al. 2012. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 10:14
  • Benn TM, Westerhoff P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–9
  • Bianchini A, Grosell M, Gregory SM, Wood CM. 2002. Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ Sci Technol 36:1763–6
  • Blaser SA, Scheringer M, MacLeod M, Hungerbühler K. 2008. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409
  • Bone AJ, Matson CW, Colman BP, Yang X, Meyer JN, Di Giulio RT. 2015. Silver nanoparticle toxicity to Atlantic killifish (Fundulus heteroclitus) and Caenorhabditis elegans: a comparison of mesocosm, microcosm, and conventional laboratory studies. Environ Toxicol Chem 34:275–82
  • Böhme S, Stärk HJ, Reemtsma T, Kühnel D. 2015. Effect propagation after silver nanoparticle exposure in zebrafish (Danio rerio) embryos: a correlation to internal concentration and distribution patterns. Environ Sci Nano 2:603–14
  • Colman BP, Espinasse BP, Richardson CJ, Matson CW, Lowry G, Hunt D, et al. 2014. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–36
  • Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB. 2009. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat Toxicol 94:320–7
  • Dadosh T. 2009. Synthesis of uniform silver nanoparticles with a controllable size. Materials Lett 63:2236–8
  • Dong W, Macaulay L, Kwok KWH, Hinton DE, Stapleton HM. 2013. Using whole mount in situ hybridization to examine thyroid hormone deiodinase (DI) expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol 132–133:190–9
  • Dong W, Teraoka H, Yamazaki K, Tsukiyama S, Imani S, Imagawa T, et al. 2002. 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: local circulation failure in the dorsal midbrain is associated with increased apoptosis. Toxicol Sci 69:191–201
  • Geranio L, Heuberger M, Nowack B. 2009. The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–18
  • Gilga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. 2014. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11
  • Gorth DJ, Rand DM, Webster TJ. 2011. Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–50
  • Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H. 2012. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46:7037–45
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–22
  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–15
  • Groh K, Dalkvist T, Piccapietra F, Behra R, Suter M, Schirmer K. 2014. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos. Nanotoxicology 9:81–91
  • Grossell M, Nielson C, Bianchini A. 2002. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C Toxicol Pharmacol 133:287–303
  • He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. 2012. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 33:7547–55
  • Howarth DL, Law SHW, Law JMcH, Mondon JA, Kullman SW, Hinton DE. 2012. Exposure to the synthetic FXR agonist GW4064 causes alterations in gene expression and sublethal hepatotoxicity in eleutheroembryo medaka (Oryzias latipes). Toxicol Appl Pharmacol 243:111–21
  • Hwang P-P, Lee T-H. 2007. New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol Part A 148:479–97
  • Ivask A, Kurvet I, Karemets K, Blinova I, Aruoja V, Suppi S, et al. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:e102108
  • Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF. 2015. Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49:4389–97
  • Kim B, Park C-S, Murayama M, Hochella MF. Jr., 2010. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–14
  • Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100:1033–43
  • Kim K-T, Truong L, Wehmas L, Tanguay RL. 2013. Silver nanoparticle toxicity in the embryonic zebrafish is governed by particle dispersion and ionic environment. Nanotechnology 24:115101
  • Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, Ryu D-Y. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro 23:1076–84
  • Kwok KWH, Auffan M, Badireddy AR, Nelson CM, Wiesner MR, Chilkoti A, et al. 2012. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effect of coating materials. Aquat Toxicol 120–121:59–66
  • Laban G, Nies LF, Turco RF, Bickham JW, Sepulveda MS. 2010. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19:185–95
  • Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, et al. 2012. Toxicity of citrate-capped silver nanoparticles in common carp (Cyprinus carpio). J Biomed Biotechnol 2012:262670
  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, et al. 2012. Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–9
  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW. 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66
  • McCormick SD. 1995. Hormonal control of gill Na+,K+-ATPase and chloride cell function. In: Wood CM, Shuttleworth TJ, eds. Cellular and Molecular Approaches to Fish Ionic Regulation, Fish Physiology, Vol. 14, New York: Academic Press, 285–315
  • McShan D, Ray PC, Yu H. 2014. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–27
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–64
  • Navarro E, Wagner B, Odzak N, Sigg L, Behra R. 2015. Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environ Sci Technol 49:8041–7
  • Nowack B. 2010. Chemistry. Nanosilver revisited downstream. Science 330:1054
  • Park MVDZ, Neigh AM, Vermulen JP, de la Fonteyne LJJ, Verharen HW, Briede JJ, et al. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–17
  • Peretyazhko TS, Zhang Q, Colvin VL. 2014. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol 48:11954–61
  • Pham CH, Yi J, Gu MB. 2012. Biomarker gene response in male Medaka (Oryzias latipes) chronically exposed to silver nanoparticle. Ecotoxicol Environ Safe 78:239–45
  • Pistilli M. 2011. Nanosilver Market Growth: Boon or Bust for Silver Prices. Silver Investing News. Vancouver, BC, Canada: Investing News Network®: Dig Media Inc
  • Rao X, Huang X, zhou Z, Lin X. 2013. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71–85
  • Rasband WS. 2015. ImageJ, US National Institutes of Health, Bethesda, MD, USA. [Online] Available at: http://imagej.nih.gov/ij/. Accessed 7 Jan 2015
  • Reidy B, Haase A, Luch A, Dawson KA, Lynch I. 2013. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–350
  • Schultz AG, Ong KJ, MacCormack T, Ma G, Veinot JGC, Goss GG. 2012. Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46:10295–301
  • Seltenrich N. 2013. Nanosilver: weighing the risks and benefits. Environ Health Perspect 121:A220–5
  • Silver Nanotechnology Working Group. 2012. Nanosilver: Safety, Health and the Environmental Effects and Role of Antimicrobial Resistance. Comments of the Silver Nanotechnology Working Group for Review by the European Commission Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Durham, NC: Silver Nanotechnology Working Group, The Silver Research Consortium, LLC
  • Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ. 2012. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–35
  • The Project on Emerging Nanomaterials. 2015. Washington, DC: Woodrow Wilson International Center for Scholars. [Online] Available at: http://www.nanotechproject.org. Accessed 30 Nov 2015
  • Thermes V, Kin C-C, Hwang P-P. 2010. Expression of Ol-foxi3 and Na+/K+ ATPase in ionocytes during the development of euryhaline medaka (Oryzias latipes) embryos. Gene Expr Patterns 10:185–92
  • Truong L, Tilton SC, Zaikova T, Richman E, Waters KM, Hutchison JE, Tanguay RL. 2013. Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology 7:192–201
  • Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. 2013. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–14
  • Wang J, Wang W-X. 2013. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Environ Toxicol Chem 33:632–40
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, et al. 2009. Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–38
  • Wood CM, Hogstrand C, Galvez F, Munger RS. 1996. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss): 2. The effects of silver thiosulphate. Aquat Toxicol 35:111–25
  • Wood CM. 2011. Silver. In: Wood CM, Farrell AP, Brauner CJ, eds. Fish physiology: Homeostasis and Toxicology of Essential Metals, Vol 31B. San Diego, CA: Elsevier Publishers
  • Wood CM, Marshall WS. 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish, Fundulus heteroclitus- a euryhaline estuarine teleosts. Estuaries 17:34–52
  • Wu S-C, Horng J-L, Liu S-T, Hwang P-P, Wen Z-H, Lin C-S, Lin L-Y. 2010. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am J Physiol Cell Physiol C 298:237–50
  • Wu M, Shariat-Madar B, Haron MH, Wu M, Khan IA, Dasmahapatra AK. 2011. Ethanol-induced attenuation of oxidative stress is unable to alter mRNA expression pattern of catalase, glutathione reductase, glutathione-S-transferase (GST1A), and superoxide dismutase (SOD3) enzymes in Japanese rice fish (Oryzias latipes) embryogenesis. Comp Biochem Physiol C 153:159–67
  • Wu Y, Zhou Q. 2013. Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–72
  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. 2012. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–27
  • Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, et al. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–7
  • Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K. 2014. Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition. Nanotoxicology 9:54–63
  • Zhao CM, Wang WX. 2012. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.