1,349
Views
113
CrossRef citations to date
0
Altmetric
Original Articles

Biomanufacturing for tissue engineering: Present and future trends

, , , &
Pages 203-216 | Received 01 Nov 2009, Published online: 03 Dec 2009
 

Abstract

Tissue engineering, often referred to as regenerative medicine and reparative medicine, is an interdisciplinary field that necessitates the combined effort of cell biologists, engineers, material scientists, mathematicians, geneticists, and clinicians toward the development of biological substitutes that restore, maintain, or improve tissue function. It has emerged as a rapidly expanding approach to address the organ shortage problem and comprises tissue regeneration and organ substitution. Cells placed on/or within constructs is the most common strategy in tissue engineering. Successful cell seeding depends on fast attachment of cell to scaffolds, high cell survival and uniform cell distribution. The seeding time is strongly dependent on the scaffold material and architecture. Scaffolds provide an initial biochemical substrate for the novel tissue until cells can produce their own extra-cellular matrix (ECM). Thus scaffolds not only define the 3D space for the formation of new tissues, but also serve to provide tissues with appropriate functions. These scaffolds are often critical, both in vivo (within the body) or in vitro (outside the body) mimicking in vivo conditions. Additive fabrication processes represent a new group of non-conventional fabrication techniques recently introduced in the biomedical engineering field. In tissue engineering, additive fabrication processes have been used to produce scaffolds with customised external shape and predefined internal morphology, allowing good control of pore size and pore distribution. This article provides a comprehensive state-of-the-art review of the application of biomanufacturing additive processes in the field of tissue engineering. New and moving trends in biomanufacturing technologies and the concept of direct cell-printing technologies are also discussed.

Acknowledgements

This research has been supported by the Portuguese Foundation for Science and Technology through the grant SFRH/BD/37604/2007 and the projects PTDC/EME-PME/71436/2006 and POCTI/SAU-BMA/60287/2004. It has been also supported by the Thematic Network on Biomanufacturing: Materials, Processes and Simulation funded by CYTED ‘Ciencia Y Tecnologia Para El Desarrollo’. In addition, contributions have been made with support from the Singapore Ministry of Education Academic Research Funds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.