1,349
Views
113
CrossRef citations to date
0
Altmetric
Original Articles

Biomanufacturing for tissue engineering: Present and future trends

, , , &
Pages 203-216 | Received 01 Nov 2009, Published online: 03 Dec 2009

References

  • 2009 . PolyJet Matrix 3D Printing Technology Letter [online] . Available from: http://www.objet.com/ [Accessed 8 September 2009] .
  • Abeyewickremea , A. , Kwoka , A. , McEwanb , J.R. and Jayasinghe , S.N. 2009 . Bio-electrospraying embryonic stem cells: interrogating cellular viability and pluripotency . Itegrative Biology , 1 : 260 – 266 .
  • Adachi , T. , Osako , Y. , Tanaka , M. , Hojo , M. and Hollister , S.J. 2006 . Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration . Biomaterials , 27 ( 21 ) : 3964 – 3972 .
  • Ang , T.H. , Sultana , F.S. , Hutmacher , D.W. , Wong , Y.S. , Fuh , J.Y. , Mo , X.M. , Loh , H.T. , Burdet , E. and Teoh , S.H. 2002 . Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispersing system . Materials Science and Engineering , C20 : 35 – 42 .
  • Barry , R. III , Shepherd , R. , Hanson , J. , Nuzzo , R. , Wiltzius , P. and Lewis , J. 2009 . Direct-write assembly of 3D hydrogel scaffolds for guided cell growth . Advanced Materials , 21 ( 23 ) : 2407 – 2410 .
  • Bártolo , P.J. and Mitchell , G. 2003 . Stereo-thermal-lithography . Rapid Prototyping Journal , 9 : 150 – 156 .
  • Bártolo , P.J. , Almeida , H.A. , Rezende , R.A. , Laoui , T. and Bidanda , B. 2007 . “ Advanced processes to fabricate scaffolds for tissue engineering ” . In Virtual prototyping & bio manufacturing in medical applications , Edited by: Bidanda , B. and Bártolo , P. 299 Berlin : Springer Verlag .
  • Bártolo , P.J. , Almeida , H.A. and Laoui , T. 2009 . Rapid prototyping and manufacturing for tissue engineering scaffolds . International Journal of Computer Applications in Technology , 36 : 1 – 9 .
  • Bártolo , P.J. , 2006 . State of the art of solid freeform fabrication for soft and hard tissue engineering . Design and Nature III: Comparing Design in Nature with Science and Engineering . Southampton, , UK : WIT Press , 233 – 243 .
  • Bucklen , Wettergreen , W. , Yuksel , E. and Liebschner , M. , 2008 . Bone-derived CAD library for assembly of scaffolds in computer-aided tissue engineering . Virtual and Physical Prototyping , 3 ( 1 ), 13 – 23 .
  • Cai , S. and Xi , J. 2008 . A control approach for pore size distribution in the bone scaffold based on the hexahedral mesh refinement . Computer-Aided Design , 40 ( 10–11 ) : 1040 – 1050 .
  • Chan , G. and Mooney , D.J. 2008 . New materials for tissue engineering: towards greater control over the biological response . Trends Biotechnol , 26 ( 7 ) : 382 – 392 .
  • Cheah , C.M. , Chua , C.K. , Leong , K.F. , Cheong , C.H. and Naing , M.W. 2004 . Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering . Tissue Engineering , 10 ( 3–4 ) : 595 – 610 .
  • Chu , T.M. , Halloran , J.W. , Hollister , S.J. and Feinberg , S.E. 2001 . Hydroxyapatite implants with designed internal architecture . Journal of Materials Science: Materials in Medicine , 12 ( 6 ) : 471 – 478 .
  • Chua , C.K. , Leong , K.F. , Tan , K.H. , Wiria , F.E. and Cheah , C.M. 2004 . Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects . Journal of Materials Science: Materials in Medicine , 15 ( 10 ) : 1113 – 1121 .
  • Chua , C.K. , Leong , K.F. and Tan , K.H. 2009 . “ Specialized fabrication Processes: Rapid Prototyping ” . In Biomedical materials , Edited by: Narayan , R. 493 – 523 . Berlin : Springer Science .
  • Chua , C.K. , Sudarmadji , N. , Leong , K.F. , Chou , S.M. , Lim , A.S.C. and Firdaus , W.M. , 2009 . Process flow for designing functionally graded tissue engineering scaffolds . 4th International Conference on Advanced Research in Virtual and Rapid Prototyping , 6–10 October , Leiria, , Portugal .
  • Cooke , M.N. , Fisher , J.P. , Dean , D. , Rimnac , C. and Mikos , A.G. 2002 . Use of stereolithography to manufacture criticalsized 3D biodegradable scaffolds for bone ingrowth . Journal of Biomedical Materials Research Part B: Applied Biomaterials , 64B : 65 – 69 .
  • Crump , S.S. , 1992 . Apparatus and method for creating three-dimensional objects . Patent US5121329, June 9 1992 .
  • Cui , X. and Boland , T. 2009 . Human microvasculature fabrication using thermal inkjet printing technology . Biomaterials , 30 ( 31 ) : 6221 – 6227 .
  • Domingos , M. , Dinucci , D. , Cometa , S. , Alderighi , M. , Bartolo , P.J. and Chiellini , F. , 2009 . Polycaprolactone scaffolds fabricated via bioextrusion for tissue engineering applications . International Journal of Biomaterials (Submitted) .
  • Engel , E. , Michiardi , A. , Navarro , M. , Lacroix , D. and Planell , J.A. 2007 . Nanotechnology in regenerative medicine: the materials side . Trends in Biotechnology , 26 : 39 – 47 .
  • Griffith , M.L. and Halloran , J.W. 1996 . Freeform fabrication of ceramics via stereolithography . Journal of the American Ceramic Society , 79 : 2601 – 2608 .
  • He , J. , Li , D. , Liu , Y. , Gong , H. and Lu , B. 2008 . Indirect fabrication of microstructured chitosan-gelatin scaffolds using rapid prototyping . Virtual and Physical Prototyping , 3 ( 3 ) : 159 – 166 .
  • Hollister , S.J. 2005 . Porous scaffold design for tissue engineering . Natural Materials , 4 ( 7 ) : 518 – 524 .
  • Jayasinghe , S. 2007 . Bio-electrosprays: The development of a promising tool for regenerative and therapeutic medicine . Biotechnology Journal , 2 ( 8 ) : 934 – 937 .
  • Kim , S.S. , Utsunomiya , H. , Koski , J.A. , Wu , B.M. , Cima , M.J. , Sohn , J. , Mukai , K. , Griffith , L.G. and Vacanti , J.P. 1998 . Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels . Annals of Surgery , 228 ( 1 ) : 8 – 13 .
  • Lam , C. , Olkowski , R. , Swieszkowski , W. , Tan , K. , Gibson , I. and Hutmacher , D. 2008 . Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering . Virtual and Physical Prototyping , 3 ( 4 ) : 193 – 197 .
  • Lam , C.X. , Mo , X.M. , Teoh , S.H. and Hutmacher , D.W . 2002 . Scaffold development using 3D printing with a starchbased polymer . Materials Science and Engineering , 20 : 49 – 56 .
  • Lan , P.X. , Lee , J.W. , Seol , Y.J. and Cho , D.W. 2009 . Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification . Journal of Materials Science: Materials in Medicine , 20 ( 1 ) : 271 – 279 .
  • Lee , G. and Barlow , J.W. , 1996 . Selective laser sintering of bioceramic materials for implants . '96 SFF Symposium , August 12–14, Austin, TX .
  • Leong , K.F. , Cheah , C.M. and Chua , C.K. 2003 . Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs . Biomaterials , 24 ( 13 ) : 2363 – 2378 .
  • Leong , K. , Chua , C. , Sudarmadji , N. and Yeong , W. 2008 . Engineering functionally graded tissue engineering scaffolds . Journal of the Mechanical Behavior of Biomedical Materials , 1 ( 2 ) : 140 – 152 .
  • Levy , R.A. , Chu , T.M. , Halloran , J.W. , Feinberg , S.E. and Hollister , S. 1997 . CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant . AJNR American Journal of Neuroradiology , 18 ( 8 ) : 1522 – 1525 .
  • Lim , T. , Bang , C. , Chian , K. and Leong , K. 2008 . Development of cryogenic prototyping for tissue engineering . Virtual and Physical Prototyping , 3 ( 1 ) : 25 – 31 .
  • Liu , V.A. and Bhatia , S.N. , 2002 . Three dimensional patterning of hydrogels containing living cells . Biomedical Microdevices , 257 – 266 .
  • Matsumoto , T. and Mooney , D.J. 2006 . Cell instructive polymers . Advances in Biochemical Engineering and Biotechnology , 102 : 113 – 137 .
  • Melchels , F.P.W. , Feijen , J. and Grijpma , D.W. 2009 . A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography . Biomaterials , 30 ( 23–24 ) : 3801 – 3809 .
  • Mironov , V. , Boland , T. , Trusk , T. , Forgacs , G. and Markwald , R.R. 2003 . Organ printing: computer-aided jet-based 3D tissue engineering . Trends in Biotechnology , 21 ( 4 ) : 157 – 161 .
  • Mironov , V. , Prestwich , G. and Forgacs , G. 2007 . Bioprinting living structures . Journal of Materials Chemistry , 17 ( 20 ) : 2054 – 2060 .
  • Mironov , V. , Visconti , R. , Kasyanov , V. , Forgacs , G. , Drake , C. and Markwald , R. 2009 . Organ printing: Tissue spheroids as building blocks . Biomaterials , 30 ( 12 ) : 2164 – 2174 .
  • Mironov , V. , Gentile , C. , Brakke , K. , Trusk , T. , Jakab , K. , Forgacs , G. , Kasyanov , V. , Visconti , R. and Markwald , R. 2009 . Designer ‘blueprint’ for vascular trees: Morphology evolution of vascular tissue constructs . Virtual and Physical Prototyping , 4 ( 2 ) : 63 – 74 .
  • Mistry , A.S. and Mikos , A.G. 2005 . Tissue engineering strategies for bone regeneration . Advances in Biochemical Engineering and Biotechnology , 94 : 1 – 22 .
  • Mota , C. , Chiellini , F. , Bártolo P.J. and Chiellini , E. 2009 . A novel approach to the fabrication of polymeric scaffolds for tissue engineering applications . VII Convegno Nazionale Scienza e Tecnologia Dei Materiali , June, Tirrenia, Italy .
  • Mota , C. , Mateus , A. , Bártolo , P.J. , Almeida , H. and Ferreira , N. , 2009 . Processo e equipamento de fabrico rapido por bioextrusao/Process and equipment for rapid fabrication through bioextrusion . Portuguese Patent Application .
  • Naing , M.W. , Chua , C.K. and Leong , K.F. 2008 . “ Computer aided tissue engineering scaffold fabrication ” . In Virtual Prototyping & Biomedical Manufacturing in Medical Applications , Edited by: Bidanda , B. and Bártolo , P. 67 – 85 . New York : Springer .
  • Nair , L.S. and Laurencin , C.T. 2006 . Polymers as biomaterials for tissue engineering and controlled drug delivery . Advances in Biochemical Engineering and Biotechnology , 102 : 47 – 90 .
  • Nikovits , W. and Stockdale , F.E. 2007 . “ Gene expression, cell determination, and differentiation ” . In Principles of tissue engineering , Edited by: Lanza , R. , Langer , R. and Vacanti , J. New York : Academic Press .
  • Ramanath , H.S , Chandrasekaran , M. , Chua , C.K. , Leong , K.F. and Shah , K.D. 2007 . Modeling of extrusion behavior of biopolymer and composites in fused deposition modeling . Key Engineering Materials , 334–335 : 1241 – 1244 .
  • Ramanath , H.S. , Chua , C.K. , Leong , K.F. and Shah , K.D. 2008 . Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling . Journal of Materials Science: Materials in Medicine , 19 ( 7 ) : 2541 – 2550 .
  • Rath , S. , Cohn , D. and Hutmacher , D. 2008 . Comparison of chondrogenesis in static and dynamic environments using a SFF designed and fabricated PCL-PEO scaffold . Virtual and Physical Prototyping , 3 ( 4 ) : 209 – 219 .
  • Rezende , R. , Bártolo , P.J. , Mendes , A. and Filho , R.M. , 2009 . Rheological behaviour of alginate solutions for biomanufacturing . Journal of Applied Polymer Science [in press] .
  • Sachlos , E. , Reis , N. , Ainsley , C. , Derby , B. and Czernuszka , J.T. 2003 . Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication . Biomaterials , 24 ( 8 ) : 1487 – 1497 .
  • Sachs , E.M. , Haggerty , J.S. , Cima , M.J. and Williams , P.A. , 1993 . Three-dimensional printing techniques . Patent US5204055, April 20 1993 .
  • Schiele , N. , Koppes , R. , Corr , D. , Ellison , K. , Thompson , D. , Ligon , L. , Lippert , T. and Chrisey , D. 2009 . Laser direct writing of combinatorial libraries of idealized cellular constructs: Biomedical applications . Applied Surface Science , 255 ( 10 ) : 5444 – 5447 .
  • Skalak , R. and Fox , C.F. 1988 . Tissue engineering , New York : Alan R. Liss .
  • Tan , J.Y. , Chua , C.K. and Leong , K.F. , 2009 . Indirect fabrication of tissue engineering scaffolds using rapid prototyping and a foaming process . 4th International Conference on Advanced Research in Virtual and Rapid Prototyping , 6–10 October, Leiria, Portugal .
  • Tan , K.H. , Chua , C.K. , Leong , K.F. , Cheah , C.M. , Cheang , P. , Abu Bakar , M.S. and Cha , S.W. 2003 . Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends . Biomaterials , 24 ( 18 ) : 3115 – 3123 .
  • Tan , K.H. , Chua , C.K. , Leong , K.F. , Naing , M.W. and Cheah , C.M. 2005 . Fabrication and Characterisation of hydroxyapatite Biocomposite Scaffolds Using Laser Sintering . Proceedings of the Institute of Mechanical Engineers, Journal of Engineering In Medicine UK, May , 219 : 183 – 194 .
  • Tellis , B.C. , Szivek , J.A. , Bliss , C.L. , Margolis , D.S. , Vaidyanathan , R.K. and Calvert , P. 2008 . Trabecular scaffolds created using micro CT guided fused deposition modeling . Materials Science Engineering C , 28 : 171 – 178 .
  • Velema , J. and Kaplan , D. 2006 . Biopolymer-based biomaterials as scaffolds for tissue engineering . Advances in Biochemical Engineering and Biotechnology , 102 : 187 – 238 .
  • Wang , F. , Shor , L. , Darling , A. , Khalil , S. , Güçeri , S. and Lau , A. 2004 . Precision deposition and characterization of cellular polycaprolactone tissue scaffolds . Rapid Prototyping Journal , 10 : 42 – 49 .
  • Williams , J.M. , Adewunmi , A. , Schek , R.M. , Flanagan , C.L. , Krebsbach , P.H. , Feinberg , S.E. , Hollister , S.J. and Das , S. 2005 . Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering . Biomaterials , 26 ( 23 ) : 4817 – 4827 .
  • Wiria , F.E. , Leong , K.F. , Chua , C.K. and Liu , Y. 2007 . Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering . Acta Biomater , 3 ( 1 ) : 1 – 12 .
  • Wiria , F.E. , Chua , C.K. , Leong , K.F. , Quah , Z.Y. , Chandrasekaran , M. and Lee , M.W. 2008 . Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering . Journal of Materials Science: Materials in Medicine , 19 ( 3 ) : 989 – 996 .
  • Woodfield , T.B.F. , Malda , J. , de Wijn , J. , Péters , F. , Riesle , J. and van Blitterswijk , C.A. 2004 . Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique . Biomaterials , 25 ( 18 ) : 4149 – 4161 .
  • Yan , Y. , Zhang , R. and Lin , F. , 2003 . Research and applications on bio-manufacturing . 1st International Conference on Advanced Research in Virtual and Rapid Protopying , Leiria, Portugal .
  • Yang , S. , Leong , K. , Du , Z. and Chua , C. 2001 . The design of scaffolds for use in tissue engineering. Part I. Traditional factors . Tissue Engineering , 7 ( 6 ) : 679 – 689 .
  • Yang , S. , Leong , K. , Du , Z. and Chua , C. 2002 . The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques . Tissue Engineering , 8 ( 1 ) : 1 – 11 .
  • Yeong , W.Y. , Chua , C.K. , Leong , K.F. and Chandrasekaran , M. 2004 . Rapid prototyping in tissue engineering: challenges and potential . Trends in Biotechnology , 22 ( 12 ) : 643 – 652 .
  • Yeong , W.Y. , Chua , C.K. and Leong , K.F. 2006 . Indirect fabrication of collagen scaffold based on inkjet printing technique . Rapid Prototyping Journal , 12 ( 4 ) : 229 – 237 .
  • Yeong , W.Y. , Chua , C.K. , Leong , K.F. , Chandrasekaran , M. and Lee , M.W. 2007 . Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping . Journal of Biomedical Materials Research B Applied Biomaterials , 82 ( 1 ) : 260 – 266 .
  • Yildirim , E. , Besunder , R. , Guceri , S. , Allen , F. and Sun , W. 2008 . Fabrication and plasma treatment of 3D polycaprolactane tissue scaffolds for enhanced cellular function . Virtual and Physical Prototyping , 3 ( 4 ) : 199 – 207 .
  • Yuan , D. , Lasagni , A. , Shao , P. and Das , S. 2008 . Rapid prototyping of microstructured hydrogels via laser direct–write and laser interference photopolymerisation . Virtual and Physical Prototyping , 3 ( 4 ) : 221 – 229 .
  • Zeltinger , J. , Sherwood , J.K. , Graham , D.A. , Müeller , R. and Griffith , L.G. 2001 . Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition . Tissue Enginering , 7 ( 5 ) : 557 – 572 .
  • Zhou , J. , Lu , L. , Byrapogu , K. , Wootton , D. , Lelkes , P. and Fair , R. 2007 . Electrowetting-based multi-microfluidics array printing of high resolution tissue construct with embedded cells and growth factors . Virtual and Physical Prototyping , 2 ( 4 ) : 217 – 223 .
  • Zhou , W.Y. , Lee , S.H. , Wang , M. , Cheung , W.L. and Ip , W.Y. 2008 . Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres . Journal of Materials Science: Materials in Medicine , 19 ( 7 ) : 2535 – 2540 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.