296
Views
3
CrossRef citations to date
0
Altmetric
Articles

Modeling of torrefaction of small biomass particles

, ORCID Icon, ORCID Icon, &
Pages 229-238 | Received 20 Dec 2016, Accepted 31 May 2017, Published online: 11 Aug 2017
 

ABSTRACT

A simple single-step kinetic model consisting of two parallel reactions is proposed for torrefaction of small biomass particles. The model is validated against experimental data on torrefaction of poplar wood fines. Comparison of experimental data and model prediction shows that the results predicted by the proposed simplified model are as accurate as those from the models of Di Blasi and Lanzetta (1997) and Rousset et al. (2006) which involve larger numbers of model parameters – eight and sixteen, respectively – compared to four in the proposed model. This makes it suitable for incorporation into the overall reactor model. At 493 and 553 K, the relative mean errors are found to be 0.056, 0.080, 0.051 and 0.050, 0.100, 0.048 for the proposed model, Rousset et al.’s (2006) model and Blasi and Lanzetta's (1997) model, respectively. The effect of particle size, temperature and residence time on torrefaction of biomass is investigated. A transformation of rate-controlling regime from kinetic to heat transfer is identified with an increase in particle size and temperature. Sensitivity analysis shows that the dimensionless groups such as pyrolysis number, dimensionless heat of reaction and dimensionless activation energy have significant influence on the particle temperature and torrefaction behaviour.

Acknowledgements

The present work is the outcome of scientific collaboration between the National Institute of Technology Durgapur, India, Dalhousie University, Canada, and Greenfield Research Incorporated, Halifax, Canada.

Disclosure statement

There is no potential conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 427.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.