348
Views
4
CrossRef citations to date
0
Altmetric
Articles

Trade-off decisions in a novel deep reinforcement learning for energy savings in HVAC systems

, ORCID Icon & ORCID Icon
Pages 809-831 | Received 01 Nov 2021, Accepted 30 Jun 2022, Published online: 04 Aug 2022
 

Abstract

This paper presents Model-based Reinforcement Learning (MB-RL) techniques to control the indoor air temperature, and CO2 concentration level, and minimize the energy consumption of the heating, ventilating, and air conditioning (HVAC) systems, simultaneously. For this purpose, a trade-off is made between maintaining indoor comfort levels and minimizing energy consumption. The control of the HVAC system is performed using the Deterministic Policy RL (DP-RL) method. Moreover, the nonlinear autoregressive exogenous neural network (NARX-NN) is employed as an approximation function with DP-RL method to provide a hybrid DP-NARX-RL controller. By applying the DP-RL and DP-NARX-RL controllers to the HVAC system of a typical building, parameters such as the indoor comfort levels, the electrical power, and energy consumed, and the energy costs at various pricing schemes are evaluated for two case studies. In both cases, the results show the better performance of DP-NARX-RL compared to DP-RL, RL, and PID controllers.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 297.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.