348
Views
4
CrossRef citations to date
0
Altmetric
Articles

Trade-off decisions in a novel deep reinforcement learning for energy savings in HVAC systems

, ORCID Icon & ORCID Icon
Pages 809-831 | Received 01 Nov 2021, Accepted 30 Jun 2022, Published online: 04 Aug 2022

References

  • Ahn, K. U., and C. S. Park. 2019. “Application of Deep Q-Networks for Model-Free Optimal Control Balancing Between Different HVAC Systems.” Science and Technology for the Built Environment 26 (1): 61–74. doi:10.1080/23744731.2019.1680234.
  • Alawadi, S., D. Mera, M. Fernández-Delgado, F. Alkhabbas, C. M. Olsson, and P. Davidsson. 2020. “A Comparison of Machine Learning Algorithms for Forecasting Indoor Temperature in Smart Buildings.” Energy Systems, 1–17. doi:10.1007/s12667-020-00376-x.
  • Azuatalam, D., W. L. Lee, F. de Nijs, and A. Liebman. 2020. “Reinforcement Learning for Whole-Building HVAC Control and Demand Response.” Energy and AI 2: 1–21. doi:10.1016/j.egyai.2020.100020.
  • Baghaee, S., and I. Ulusoy. 2018. “User Comfort and Energy Efficiency in HVAC Systems by Q-Learning”. In 2018 26th Signal Processing and Communications Applications Conference (SIU), 1–4. IEEE. doi:10.1109/SIU.2018.8404287.
  • Carbonera, L. F. B., D. Pinheiro Bernardon, D. de Castro Karnikowski, and F. Alberto Farret. 2021. “The Nonlinear Autoregressive Network with Exogenous Inputs (NARX) Neural Network to Damp Power System Oscillations.” International Transactions on Electrical Energy Systems 31 (1): e12538.
  • Chapra, S. C., and R. P. Canale. 2015. Numerical Methods for Engineers. 7th Ed. New York, NY: McGraw Hill.
  • Chen, B., Z. Cai, and M. Bergés. 2019. “Gnu-RL: A Precocial Reinforcement Learning Solution for Building HVAC Control Using a Differentiable MPC Policy”. Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, pp. 316–325. doi:10.1145/3360322.3360849.
  • Ding, X., W. Du, and A. Cerpa. 2019. “Octopus: Deep reinforcement learning for holistic smart building control”. In Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 326–335. doi:10.1145/3360322.3360857.
  • Du, Y., H. Zandi, O. Kotevska, K. Kurte, J. Munk, K. Amasyali, and F. Li. 2021. “Intelligent Multi-Zone Residential HVAC Control Strategy Based on Deep Reinforcement Learning.” Applied Energy 281: 116117. doi:10.1016/j.apenergy.2020.116117.
  • Gao, G., J. Li, and Y. Wen. 2019. “Energy-Efficient Thermal Comfort Control in Smart Buildings Via Deep Reinforcement Learning”. arXiv preprint arXiv:1901.04693.
  • Gao, G., J. Li, and Y. Wen. 2020. “Deep Comfort: Energy-Efficient Thermal Comfort Control in Buildings via Reinforcement Learning.” IEEE Internet of Things, 1–13. doi:10.1109/JIOT.2020.2992117.
  • Hao, J., D. W. Gao, and J. J. Zhang. 2020. “Reinforcement Learning for Building Energy Optimization Through Controlling of Central HVAC System.” IEEE Journal of Power and Energy 7: 320–328. doi:10.1109/OAJPE.2020.3023916.
  • Homod, R. Z., A. Almusaed, A. Almssad, M. K. Jaafar, M. Goodarzi, and K. S. Sahari. 2021. “Effect of Different Building Envelope Materials on Thermal Comfort and air-Conditioning Energy Savings: A Case Study in Basra City, Iraq.” Energy Storage 34: 101975. doi:10.1016/j.est.2020.101975.
  • Homod, R. Z., K. S. Gaeid, S. M. Dawood, A. Hatami, and K. S. Sahari. 2020. “Evaluation of Energy-Saving Potential for Optimal Time Response of HVAC Control System in Smart Buildings.” Applied Energy 271: 115255. doi:10.1016/j.apenergy.2020.115255.
  • Homod, R. Z., K. S. M. Sahari, and H. A. Almurib. 2014. “Energy Saving by Integrated Control of Natural Ventilation and HVAC Systems Using Model Guide for Comparison.” Renewable Energy 71: 639–650.
  • Homod, R. Z., K. S. M. Sahari, H. A. Almurib, and F. H. Nagi. 2011. “Double Cooling Coil Model for Nonlinear HVAC System Using RLF Method.” Energy and Buildings 43 (9): 2043–2054. doi:10.1016/j.enbuild.2011.03.023.
  • Homod, R. Z., K. S. M. Sahari, H. A. Mohamed, and F. Nagi. 2010. “Hybrid PID-Cascade Control for HVAC System.” International Journal of Systems Control 1 (4): 170–175.
  • Homod, R. Z., H. Togun, H. J. Abd, and K. S. Sahari. 2020. “A Novel Hybrid Modelling Structure Fabricated by Using Takagi-Sugeno Fuzzy to Forecast HVAC Systems Energy Demand in Real-Time for Basra City.” Sustainable Cities and Society 56: 102091. doi:10.1016/j.scs.2020.102091.
  • Hosseinloo, A. H., A. Ryzhov, A. Bischi, H. Ouerdane, K. Turitsyn, and M. A. Dahleh. 2020. “Data-driven Control of Microclimate in Buildings: An Event-Triggered Reinforcement Learning Approach.” Applied Energy 277: 115451. doi:10.1016/j.apenergy.2020.115451.
  • Hunt, J. J., A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. 2016. “Continuous learning control with deep reinforcement”. International Conference on Learning Representations (ICLR).
  • Hussein, A. L., A. A. Ateeq, and Z. R. Homod. 2022. “Energy Saving by Reinforcement Learning for Multi-Chillers of HVAC Systems”. Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 7–9 September 2021, Sakarya, Turkey. EAI. doi:10.4108/eai.7-9-2021.2315301.
  • Kurte, K., J. Munk, O. Kotevska, K. Amasyali, R. Smith, E. McKee, and H. Zandi. 2020. “Evaluating the Adaptability of Reinforcement Learning Based HVAC Control for Residential Houses.” Sustainability 12 (18): 7727. doi:10.3390/su12187727.
  • Lissa, P., C. Deane, M. Schukat, F. Seri, M. Keane, and E. Barrett. 2021. “Deep Reinforcement Learning for Home Energy Management System Control. Energy and AI”, 3, 100043. doi:10.1016/j.egyai.2020.100043.
  • Marantos, C., C. P. Lamprakos, V. Tsoutsouras, K. Siozios, and D. Soudris. 2018. “Towards Plug & Play Smart Thermostats Inspired by Reinforcement Learning”. Proceedings of the Workshop on Intelligent Embedded Systems Architectures and Applications, 39–44. doi:10.1145/3285017.3285024.
  • Moubayed, A., M. Injadat, A. B. Nassif, H. Lutfiyya, and A. Shami. 2018. “E-learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics.” IEEE Access 6: 39117–39138. doi:10.1109/ACCESS.2018.2851790.
  • Noel, M. M., and B. J. Pandian. 2014. “Control of a Nonlinear Liquid Level System Using a new Artificial Neural Network-Based Reinforcement Learning Approach.” Applied Soft Computing 23: 444–451. doi:10.1016/j.asoc.2014.06.037.
  • Perera, A. T. D., and P. Kamalaruban. 2021. “Applications of Reinforcement Learning in Energy Systems.” Renewable and Sustainable Energy Reviews 137: 110618.
  • Pita, E. G., and S. Stevenson. 1998. Air Conditioning Principles and Systems Book. Columbus, OH: Prentice Hall.
  • Polydoros, A. S., and L. Nalpantidis. 2017. “Survey of Model-Based Reinforcement Learning: Applications on Robotics.” Journal of Intelligent & Robotic Systems 86 (2): 153–173. doi:10.1007/s10846-017-0468-y.
  • Raptodimos, Y., and I. Lazakis. 2020. “Application of NARX Neural Network for Predicting Marine Engine Performance Parameters.” Ships and Offshore Structures 15 (4): 443–452. doi:10.1080/17445302.2019.1661619.
  • Rijal, H. B., M. A. Humphreys, and J. F. Nicol. 2018. “Development of a Window Opening Algorithm Based on Adaptive Thermal Comfort to Predict Occupant Behavior in Japanese Dwellings.” Japan Architectural Review 1 (3): 310–321. doi:10.1002/2475-8876.12043.
  • Ruiz, L. G. B., M. P. Cuéllar, M. D. Calvo-Flores, and M. D. C. P. Jiménez. 2016. “An Application of Nonlinear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings.” Energies 9 (9): 684.
  • Ryzhov, A., H. Ouerdane, E. Gryazina, A. Bischi, and K. Turitsyn. 2019. “Model Predictive Control of Indoor Microclimate: Existing Building Stock Comfort Improvement.” Energy Conversion and Management 179: 219–228. doi:10.1016/j.enconman.2018.10.046.
  • Sangi, R., and D. Müller. 2018. “A Novel Hybrid Agent-Based Model Predictive Control for Advanced Building Energy Systems.” Energy Conversion and Management 178: 415–427. doi:10.1016/j.enconman.2018.08.111.
  • Sutton, R. S., and A. G. Barto. 2018. Reinforcement Learning: An Introduction. 2nd ed. Cambridge, MA: MIT Press.
  • Talebi, A., and A. Hatami. 2020. “Online Fuzzy Control of HVAC Systems Considering Demand Response and Users’ Comfort.” Energy Sources, Part B: Economics Planning, and Policy 15 (7-9): 403–422. doi:10.1080/15567249.2020.1825557.
  • Vázquez-Canteli, J. R., S. Ulyanin, J. Kämpf, and Z. Nagy. 2018. “Fusing TensorFlow with Building Energy Simulation for Intelligent Energy Management in Smart Cities.” Sustainable Cities and Society 45: 243–257. doi:10.1016/j.scs.2018.11.021.
  • Wang, Z., and T. Hong. 2020. “Reinforcement Learning for Building Controls: The Opportunities and Challenges.” Applied Energy 269: 115036. doi:10.1016/j.apenergy.2020.115036.
  • Wang, Y., K. Velswamy, and B. Huang. 2017. “A Long-Short Term Memory Recurrent Neural Network-Based Reinforcement Learning Controller for Office Heating Ventilation and air Conditioning Systems.” Processes 5 (3): 46. doi:10.3390/pr5030046.
  • Wang, L., Z. Wang, and R. Yang. 2012. “Intelligent Multi-Agent Control System for Energy and Comfort Management in Smart and Sustainable Buildings.” IEEE Transactions on Smart Grid 3 (2): 605–617. doi:10.1109/TSG.2011.2178044.
  • Wei, T., S. Ren, and Q. Zhu. 2019. “Deep Reinforcement Learning for Joint Datacenter and HVAC Load Control in Distributed Mixed-use Buildings.” IEEE Transactions on Sustainable Computing, 1–16. doi:10.1109/TSUSC.2019.2910533.
  • Yoon, A. Y., H. K. Kang, and S. I. Moon. 2020. “Optimal Price Based Demand Response of HVAC Systems in Commercial Buildings Considering Peak Load Reduction.” Energies 13 (4): 862. doi:10.3390/en13040862.
  • Yu, L., Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan. 2020. “Multi-agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings.” IEEE Transactions on Smart Grid 2: 1–14. doi:10.1109/TSG.2020.3011739.
  • Yuan, Z., Y. Huang, X. Lu, J. Huang, Q. Liu, G. Qi, and Z. Cao. 2021. “Measurement of CO2 by Wavelength Modulated Reinjection Off-Axis Integrated Cavity Output Spectroscopy at 2 μm.” Atmosphere 12 (10): 1247. doi:10.3390/atmos12101247.
  • Yuan, X., Y. Pan, J. Yang, W. Wang, and Z. Huang. 2020. “Study on the Application of Reinforcement Learning in the Operation Optimization of HVAC System.” Building Simulation, 1–13. doi:10.1007/s12273-020-0602-9.
  • Zhang, Z., A. Chong, Y. Pan, C. Zhang, and K. P. Lam. 2019. “Whole Building Energy Model for HVAC Optimal Control: A Practical Framework Based on Deep Reinforcement Learning.” Energy and Buildings 199: 472–490. doi:10.1016/j.enbuild.2019.07.029.
  • Zhang, Z., A. Chong, Y. Pan, C. Zhang, S. Lu, and K. P. Lam. 2018. “A Deep Reinforcement Learning Approach to Using Whole-Building Energy Model for HVAC Optimal Control”. Building Performance Analysis Conference and SimBuild (Vol. 3, pp. 22–23).
  • Zhang, C., S. R. Kuppannagari, R. Kannan, and V. K. Prasanna. 2019. “Building HVAC Scheduling Using Reinforcement Learning Via Neural Network-Based Model Approximation”. Proceedings of the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, 287–296. doi:10.1145/3360322.3360861.
  • Zhang, Z., C. Zhang, and K. P. Lam. 2018. “A deep reinforcement learning method for model-based optimal control of HVAC systems”. doi:10.14305/ibpc.2018.ec-1.01.
  • Zhao, H., J. Zhao, T. Shu, and Z. Pan. 2021. “Hybrid-model-based Deep Reinforcement Learning for Heating, Ventilation and air-Conditioning Control.” Frontiers in Energy Research 8: 412. doi:10.3389/fenrg.2020.610518.
  • Zou, Z., X. Yu, and S. Ergan. 2019. “Towards Optimal Control of air Handling Units Using Deep Reinforcement Learning and Recurrent Neural Network.” Building and Environment 168: 106535. doi:10.1016/j.buildenv.2019.106535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.