707
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Detection and quantification of adulterants in milk powder using a high-throughput Raman chemical imaging technique

, , , , , & show all
Pages 152-161 | Received 30 Sep 2016, Accepted 05 Nov 2016, Published online: 08 Dec 2016
 

ABSTRACT

Milk is a vulnerable target for economically motivated adulteration. In this study, a line-scan high-throughput Raman imaging system was used to authenticate milk powder. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source. The system was used to acquire hyperspectral Raman images in a wave number range of 103–2881 cm1 from the skimmed milk powder mixed with two nitrogen-rich adulterants (i.e., melamine and urea) at eight concentrations (w/w) from 50 to 10,000 ppm. The powdered samples were put in sample holders with a surface area of 150 ×100 mm and a depth of 2 mm for push-broom image acquisition. Varying fluorescence signals from the milk powder were removed using a correction method based on adaptive iteratively reweighted penalised least squares. Image classifications were conducted using a simple thresholding method applied to single-band fluorescence-corrected images at unique Raman peaks selected for melamine (673 cm1) and urea (1009 cm1). Chemical images were generated by combining individual binary images of melamine and urea to visualise identification, spatial distribution and morphological features of the two adulterant particles in the milk powder. Limits of detection for both melamine and urea were estimated in the order of 50 ppm. High correlations were found between pixel concentrations (i.e., percentages of the adulterant pixels in the chemical images) and mass concentrations of melamine and urea, demonstrating the potential of the high-throughput Raman chemical imaging method for the detection and quantification of adulterants in the milk powder.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Research Program for Agricultural Science & Technology Development [grant number PJ012216]; and the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 799.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.