209
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A new floor heave mechanism considering the influences of the in-situ stress lateral coefficient and rock tensile strength

&
Pages 4279-4310 | Received 14 Mar 2022, Accepted 22 Feb 2023, Published online: 15 Mar 2023
 

Abstract

Floor heave is a disaster that is frequently encountered in tunnel engineering. Existing explanations of floor heave mechanisms have many limitations, and the most important of which is that the stress concentration, release and transfer phenomena and the influences of the in-situ stress lateral coefficient and tensile strength are ignored. Therefore, the combined finite-discrete element method (FDEM) is used to study the failure process of floor rock masses and propose a new mechanical mechanism of floor heave that can consider the influences of the in-situ stress lateral coefficient and tensile strength. The type I fracture energy corresponding to different tensile strengths is calibrated using a direct tensile simulation test. Then, the floor heave mechanism is investigated under different lateral coefficients and tensile strengths, and five different floor heave modes are proposed under different in-situ stress lateral coefficients and tensile strengths. The floor heave modes controlled by the various in-situ stress lateral coefficients and tensile strengths are different, but they can all be explained by the maximum concentrated tangential stress.

Acknowledgments

The work in this paper was based on the Y-Code of Munjiza et al. and the Y-Geo and Y-GUI of Grasselli’s Geomechanics Group (http://www.geogroup.utoronto.ca/).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (42107171, 41941018 and U21A20153).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.