219
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A new floor heave mechanism considering the influences of the in-situ stress lateral coefficient and rock tensile strength

&
Pages 4279-4310 | Received 14 Mar 2022, Accepted 22 Feb 2023, Published online: 15 Mar 2023

References

  • Chang, J. C., Li, D., Xie, T. F., Shi, W. B., & He, K. (2020). Deformation and failure characteristics and control technology of roadway surrounding rock in deep coal mines. Geofluids, 2020, 1–15.
  • Chen, X., Guo, H. Y., Zhao, P., Peng, X., & Wang, S. Z. (2011). Numerical modeling of large deformation and nonlinear frictional contact of excavation boundary of deep soft rock tunnel. Journal of Rock Mechanics and Geotechnical Engineering, 3, 421–428.
  • Chen, Y., Ma, S. Q., & Yu, Y. (2017). Stability control of underground roadways subjected to stresses caused by extraction of a 10-m-thick coal seam: A case study. Rock Mechanics and Rock Engineering, 50, 2511–2520.
  • Deng, P. H., & Liu, Q. S. (2020). Influence of the softening stress path on crack development around underground excavations: Insights from 2D-FDEM modelling. Computers and Geotechnics, 117, 1–18.
  • Deng, P. H., Liu, Q. S., Huang, X., Bo, Y., Liu, Q., & Li, W. W. (2021a). Sensitivity analysis of fracture energies for the combined finite-discrete element method (FDEM). Engineering Fracture Mechanics, 251, 107793.
  • Deng, P. H., Liu, Q. S., Huang, X., Liu, Q., Ma, H., & Li, W. W. (2021b). Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM). Engineering Fracture Mechanics, 242, 107459.
  • Deng, P. H., Liu, Q. S., Huang, X., & Ma, H. (2021c). A new hysteretic damping model and application for the combined finite-discrete element method (FDEM). Engineering Analysis with Boundary Elements, 132, 370–382.
  • Deng, P. H., Liu, Q. S., Huang, X., Pan, Y. C., & Wu, J. (2021d). FDEM numerical modeling of failure mechanisms of anisotropic rock masses around deep tunnels. Computers and Geotechnics, 142,104535.
  • Deng, P. H., Liu, Q. S., & Lu, H. F. (2022). A novel joint element parameter calibration procedure for the combined finite-discrete element method. Engineering Fracture Mechanics, 276, 108924.
  • Deng, P. H., Liu, Q. S., Ma, H., He, F., & Liu, Q. (2020). Time-dependent crack development processes around underground excavations. Tunnelling and Underground Space Technology, 103, 103518. https://doi.org/10.1016/j.tust.2020.103518
  • Du, M. Q., Wang, X. C., Zhang, Y. J., Li, L., & Zhang, P. (2020). In-situ monitoring and analysis of tunnel floor heave process. Engineering Failure Analysis, 109, 104323. https://doi.org/10.1016/j.engfailanal.2019.104323
  • Farrokh, E., Mortazavi, A., & Shamsi, G. (2006). Evaluation of ground convergence and squeezing potential in the TBM driven Ghomroud tunnel project. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 21(5), 504–510. https://doi.org/10.1016/j.tust.2005.09.003
  • Farsi, A., Bedi, A., Latham, J. P., & Bowers, K. (2020). Simulation of fracture propagation in fibre-reinforced concrete using FDEM: An application to tunnel linings. Computational Particle Mechanics, 7(5), 961–974. https://doi.org/10.1007/s40571-019-00305-5
  • Gu, J. C., Gu, L. Y., Chen, A. M., Xu, J. M., & Chen, W. (2008). Model test study on mechanism of layered fracture within surrounding rock of tunnels in deep stratum. Chinese Journal of Rock Mechanics and Engineering, 27, 433–438.
  • Han, H. Y., Fukuda, D., Liu, H. Y., Fathi Salmi, E., Sellers, E., Liu, T. J., & Chan, A. (2020). Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress. International Journal of Rock Mechanics and Mining Sciences, 127, 104214. https://doi.org/10.1016/j.ijrmms.2020.104214
  • Jiang, Y. D., Zhao, Y. X., Liu, W. G., & Li, Q. (2004). Research on floor heave of roadway in deep mining. Chinese Journal of Rock Mechanics and Engineering, 23, 2396–2401.
  • Labiouse, V., & Vietor, T. (2014). Laboratory and in situ simulation tests of the excavation damaged zone around galleries in opalinus clay. Rock Mechanics and Rock Engineering, 47(1), 57–70. https://doi.org/10.1007/s00603-013-0389-4
  • Li, G., Ma, F. S., Guo, J., Zhao, H. J., & Liu, G. (2020). Study on deformation failure mechanism and support technology of deep soft rock roadway. Engineering Geology, 264, 105262. https://doi.org/10.1016/j.enggeo.2019.105262
  • Lisjak, A., Figi, D., & Grasselli, G. (2014). Fracture development around deep underground excavations: Insights from FDEM modelling. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 493–505. https://doi.org/10.1016/j.jrmge.2014.09.003
  • Lisjak, A., Garitte, B., Grasselli, G., Müller, H. R., & Vietor, T. (2015). The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): Short-term rock mass response and FDEM numerical analysis. Tunnelling and Underground Space Technology, 45, 227–248. https://doi.org/10.1016/j.tust.2014.09.014
  • Lisjak, A., Tatone, B. S. A., Mahabadi, O. K., Grasselli, G., Marschall, P., Lanyon, G. W., Vaissière, R. D. l., Shao, H., Leung, H., & Nussbaum, C. (2016). Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 49(5), 1849–1873. https://doi.org/10.1007/s00603-015-0847-2
  • Lisjak, A., Young-Schultz, T., Li, B., He, L., Tatone, B. S. A., & Mahabadi, O. K. (2020). A novel rockbolt formulation for a GPU-accelerated, finite-discrete element method code and its application to underground excavations. International Journal of Rock Mechanics and Mining Sciences, 134, 104410. https://doi.org/10.1016/j.ijrmms.2020.104410
  • Mahabadi, O. K. (2012). Investigating the influence of micro-scale heterogeneity and microstructure on the failure and mechanical behaviour of geomaterials. University of Toronto.
  • Mahabadi, O. K., Grasselli, G., & Munjiza, A. (2010). Y-GUI: A graphical user interface and pre-processor for the combined finite-discrete element code, Y2D, incorporating material heterogeneity. Computers & Geosciences, 36(2), 241–252. https://doi.org/10.1016/j.cageo.2009.05.010
  • Mahabadi, O., Kaifosh, P., Marschall, P., & Vietor, T. (2014). Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples. Journal of Rock Mechanics and Geotechnical Engineering, 6(6), 591–606. https://doi.org/10.1016/j.jrmge.2014.10.005
  • Mahabadi, O. K., Lisjak, A., Munjiza, A., & Grasselli, G. (2012). Y-Geo: New combined finite-discrete element numerical code for geomechanical applications. International Journal of Geomechanics, 12(6), 676–688. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000216
  • Meier, T., Rybacki, E., Backers, T., & Dresen, G. (2015). Influence of bedding angle on borehole stability: A laboratory investigation of transverse isotropic oil shale. Rock Mechanics and Rock Engineering, 48(4), 1535–1546. https://doi.org/10.1007/s00603-014-0654-1
  • Miglietta, P. C., Bentz, E. C., & Grasselli, G. (2017). Finite/discrete element modelling of reversed cyclic tests on unreinforced masonry structures. Engineering Structures, 138, 159–169. https://doi.org/10.1016/j.engstruct.2017.02.019
  • Mo, S., Ramandi, H. L., Oh, J., Masoumi, H., Canbulat, I., Hebblewhite, B., & Saydam, S. (2020a). A new coal mine floor rating system and its application to assess the potential of floor heave. International Journal of Rock Mechanics and Mining Sciences, 128, 104241. https://doi.org/10.1016/j.ijrmms.2020.104241
  • Mo, S., Sheffield, P., Corbett, P., Ramandi, H. L., Oh, J., Canbulat, I., & Saydam, S. (2020b). A numerical investigation into floor buckling mechanisms in underground coal mine roadways. Tunnelling and Underground Space Technology, 103, 103497. https://doi.org/10.1016/j.tust.2020.103497
  • Mo, S., Tutuk, K., & Saydam, S. (2019). Management of floor heave at Bulga Underground Operations – A case study. International Journal of Mining Science and Technology, 29(1), 73–78. https://doi.org/10.1016/j.ijmst.2018.11.015
  • Munjiza, A. (2004). The combined finite-discrete element method. John Wiley & Sons, Ltd.
  • Niu, S. J. (2011). Study on strength degradation law of surrounding rock of deep roadways. China University of Mining and Technology, Xu Zhou.
  • Osthus, D., Godinez, H. C., Rougier, E., & Srinivasan, G. (2018). Calibrating the stress-time curve of a combined finite-discrete element method to a Split Hopkinson Pressure Bar experiment. International Journal of Rock Mechanics & Mining Sciences, 106, 278–288. https://doi.org/10.1016/j.ijrmms.2018.03.016
  • Rougier, E., Knight, E. E., Broome, S. T., Sussman, A. J., & Munjiza, A. (2014). Validation of a three-dimensional finite-discrete element method using experimental results of the Split Hopkinson Pressure Bar test. International Journal of Rock Mechanics and Mining Sciences, 70, 101–108. https://doi.org/10.1016/j.ijrmms.2014.03.011
  • Seki, S., Kaise, S., Morisaki, Y., Azetaka, S., & Jiang, Y. (2008). Model experiments for examining heaving phenomenon in tunnels. Tunnelling and Underground Space Technology, 23(2), 128–138. https://doi.org/10.1016/j.tust.2007.02.007
  • Sena, C., Ihsan Berk, T., Mark Van, D., Ted, K., & Joe, W. (2021). Application of the coal mine floor rating (CMFR) to assess the floor stability in a Central Appalachian Coal Mine. International Journal of Mining Science and Technology, 31, 83–89.
  • Sun, X. M., Chen, F., He, M. C., Gong, W. L., Xu, H. C., & Lu, H. (2017). Physical modeling of floor heave for the deep-buried roadway excavated in ten degree inclined strata using infrared thermal imaging technology. Tunnelling and Underground Space Technology, 63, 228–243. https://doi.org/10.1016/j.tust.2016.12.018
  • Sun, X. M., Zhao, C. W., Zhang, Y., Chen, F., Zhang, S. K., & Zhang, K. Y. (2021). Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks. International Journal of Mining Science and Technology, 31(2), 291–302. https://doi.org/10.1016/j.ijmst.2021.01.003
  • Tang, S. B., & Tang, C. A. (2012). Numerical studies on tunnel floor heave in swelling ground under humid conditions. International Journal of Rock Mechanics and Mining Sciences, 55, 139–150. https://doi.org/10.1016/j.ijrmms.2012.07.007
  • Tatone, B., & S. A., Grasselli, G. (2015). A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations. International Journal of Rock Mechanics and Mining Sciences, 75, 56–72. https://doi.org/10.1016/j.ijrmms.2015.01.011
  • Wang, J., Guo, Z. B., Yan, Y. B., Pang, J. W., & Zhao, S. J. (2012). Floor heave in the west wing track haulage roadway of the Tingnan Coal Mine: Mechanism and control. International Journal of Mining Science and Technology, 22(3), 295–299. https://doi.org/10.1016/j.ijmst.2012.04.002
  • Wang, J., Hu, C. C., Zuo, J. P., Wang, B., Mao, Q. F., Ding, H. G., & Zhao, N. N. (2019). Mechanism of roadway floor heave and control technology in fault fracture zone. Journal of the China Coal Society, 44, 397–408.
  • Whittles, D. N., Reddish, D. J., & Lowndes, I. S. (2007). The development of a coal measure classification (CMC) and its use for prediction of geomechanical parameters. International Journal of Rock Mechanics and Mining Sciences, 44(4), 496–513. https://doi.org/10.1016/j.ijrmms.2006.08.002
  • Wu, G. J., Chen, W. Z., Jia, S. P., Tan, X. J., Zheng, P. Q., Tian, H. M., & Rong, C. (2020). Deformation characteristics of a roadway in steeply inclined formations and its improved support. International Journal of Rock Mechanics and Mining Sciences, 130, 104324. https://doi.org/10.1016/j.ijrmms.2020.104324
  • Yang, S. Q., Chen, M., Jing, H. W., Chen, K. F., & Meng, B. (2017). A case study on large deformation failure mechanism of deep soft rock roadway in Xin’An coal mine, China. Engineering Geology, 217, 89–101. https://doi.org/10.1016/j.enggeo.2016.12.012
  • Yang, J. H., Song, G. F., Yang, Y., & Yang, Z. Q. (2018). Application of the complex variable function method in solving the floor heave problem of a coal mine entry. Arabian Journal of Geosciences, 11(17), 515. https://doi.org/10.1007/s12517-018-3875-x
  • Yang, T., & Zhang, J. (2021). Research on the treatment technology of soft rock floor heave based on a model of pressure-relief slots. Arabian Journal of Geosciences, 14(13), 1278. https://doi.org/10.1007/s12517-021-07673-4
  • Zhang, X. T., Zhang, Q. Y., Yuan, S. B., Wang, C., & Gao, Q. (2014). Development of test device for direct axial tension on rock and its application. Chinese Journal of Rock Mechanics and Engineering, 33, 2517–2523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.