199
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing acid resistance of geopolymer concrete composites by utilising styrene-butadiene latex, nano-silica and micro-silica powder

, &
Pages 4416-4434 | Received 27 Oct 2022, Accepted 11 Mar 2023, Published online: 22 Mar 2023
 

Abstract

The acid resistance of geopolymer binder, a promising alternative to ordinary Portland cement with clean technology option, needs detailed investigations for widespread use in different applications and severe acidic conditions. The aim of this work is to enhance acid resistance of geopolymer concretes (GPCs) by employing styrene-butadiene latex (SBL), nano-silica (NS) and micro-silica (MS) powders. The residual compressive strength, weight loss, visual appearance and microstructure properties of GPC samples were evaluated after exposed to hydrochloric acid (HCl) solutions with different concentrations (3%, 5% and 7%) for 90 and 180 days. The addivites increase residual compressive strength by preventing acid liquids to ingress the interior areas thanks to additional pozzolanic and filler effect leading to more compact and denser microstructure. Any apparent damage was not observed at the outer surface of GPC specimens.

Acknowledgments

The authors are grateful to the Inonu University for their financial support for the project (2017-818).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data generated during this study are included in this published article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 229.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.