199
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing acid resistance of geopolymer concrete composites by utilising styrene-butadiene latex, nano-silica and micro-silica powder

, &
Pages 4416-4434 | Received 27 Oct 2022, Accepted 11 Mar 2023, Published online: 22 Mar 2023

References

  • Aiken, T. A., Kwasny, J., Sha, W., & Soutsos, M. N. (2018). Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research, 111, 23–40. https://doi.org/10.1016/j.cemconres.2018.06.011
  • Al Bakri, A. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R., & Zarina, Y. (2012). The processing, characterization, and properties of fly ash based geopolymer concrete. Reviews on Advanced Materials Science, 30(1), 90–97.
  • Al-Zboon, K. K., Al-Smadi, B. M., & Al-Khawaldh, S. (2016). Natural volcanic tuff-based geopolymer for Zn removal: Adsorption ısotherm, kinetic and thermodynamic study. Water, Air & Soil Pollution, 227(7), 248.
  • Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679
  • Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270, 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857
  • Andrew, R. M. (2018). Global CO2 emissions from cement production. Earth System Science Data, 10(1), 195–217. https://doi.org/10.5194/essd-10-195-2018
  • Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and Building Materials, 43, 80–86. https://doi.org/10.1016/j.conbuildmat.2013.01.018
  • Assaedi, H., Shaikh, F. U. A., & Low, I. M. (2016). Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Construction and Building Materials, 123(2016), 541–552. https://doi.org/10.1016/j.conbuildmat.2016.07.049
  • ASTM C267. (2020). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes. ASTM International.
  • Bakharev, T. (2005). Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658–670. https://doi.org/10.1016/j.cemconres.2004.06.005
  • Bakharev, T., Sanjayan, J. G., & Cheng, Y. B. (2003). Resistance of alkali-activated slag concrete to acid attack. Cement and Concrete Research, 33(10), 1607–1611. https://doi.org/10.1016/S0008-8846(03)00125-X
  • Basha S, M., Ch, B. R., & Vasugi, K. (2016). Strength behaviour of geopolymer concrete replacing fine aggregates by M- sand and E-waste. International Journal of Engineering Trends and Technology, 40(7), 401–407. https://doi.org/10.14445/22315381/IJETT-V40P265
  • Behfarnia, K., & Rostami, M. (2017). Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Construction and Building Materials, 131, 205–213. https://doi.org/10.1016/j.conbuildmat.2016.11.070
  • Bernal, S. A., Rodríguez, E. D., de Gutiérrez, R. M., & Provis, J. L. (2012). Performance of alkali-activated slag mortars exposed to acids. Journal of Sustainable Cement-Based Materials, 1(3), 138–151. https://doi.org/10.1080/21650373.2012.747235
  • Bhikshma, V., Reddy, M. K., & Rao, T. S. (2012). An experimental investigation on properties of geopolymer concrete (no cement concrete). Asian Journal of Civil Engineering (Building and Housing), 13, 841–853.
  • Bhutta, M. A. R., Hussin, W. M., Azreen, M., & Tahir, M. M. (2014). Sulphate resistance of geopolymer concrete prepared from blended waste fuel ash. Journal of Materials in Civil Engineering, 26(11), 04014080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001030
  • Burciaga‐Díaz, O., & Escalante‐García, J. I. (2012). Strength and durability in acid media of alkali silicate‐activated metakaolin geopolymers. Journal of the American Ceramic Society, 95(7), 2307–2313. https://doi.org/10.1111/j.1551-2916.2012.05249.x
  • Çevik, A., Alzeebaree, R., Humur, G., Niş, A., & Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253–12264. https://doi.org/10.1016/j.ceramint.2018.04.009
  • Chen, B., & Liu, J. (2007). Mechanical properties of polymer-modified concretes containing expanded polystyrene beads. Construction and Building Materials, 21(1), 7–11. https://doi.org/10.1016/j.conbuildmat.2005.08.001
  • Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments–A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496
  • Davidovits, J. (1991). Geopolymers:Inorganic polymeric new materials. Journal of Thermal Analysis, 37(8), 1633–1656. https://doi.org/10.1007/BF01912193
  • Davidovits, J. (1999). Chemistry of geopolymeric systems, terminology. Proc. Geopolymer '99 International Conference, June 30-July 2, Saint-Quentin, France, 9–40.
  • Deb, P. S., Sarker, P. K., & Barbhuiya, S. (2016). Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement and Concrete Composites, 72, 235–245. https://doi.org/10.1016/j.cemconcomp.2016.06.017
  • Dimas, D., Giannopoulou, I., & Panias, D. (2009). Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology. Journal of Materials Science, 44(14), 3719–3730. https://doi.org/10.1007/s10853-009-3497-5
  • Djobo, J. N. Y., Elimbi, A., Tchakoute, H. K., & Kumar, S. (2017). Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives, Environ. Environmental Science and Pollution Research, 24(5), 4433–4446. https://doi.org/10.1007/s11356-016-8230-8
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606–614. https://doi.org/10.1016/j.conbuildmat.2016.07.141
  • Djobo, J. N. Y., Tchadjie, L. N., Tchakoute, H. K., Kenne, B. B. D., Elimbi, A., & Njopwouo, D. (2014). Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. Journal of Asian Ceramic Societies, 2(4), 387–398. https://doi.org/10.1016/j.jascer.2014.08.003
  • Duan, P., Yan, C., Zhou, W., Luo, W., & Shen, C. (2015). An investigation of the microstructure and durability of a fluidized bed fly ash–metakaolin geopolymer after heat and acid exposure. Materials and Design, 74, 125–137. https://doi.org/10.1016/j.matdes.2015.03.009
  • Fernandez-Jimenez, A., Garcia-Lodeiro, I., & Palomo, A. (2007). Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), 3055–3065. https://doi.org/10.1007/s10853-006-0584-8
  • Fernando, P. T., & Said, J. (2011). Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders. Materials and Structures, 44(2), 487–498. https://doi.org/10.1617/s11527-010-9643-3
  • Fu, Q., Xu, W., Zhao, X., Bu, M., Yuan, Q., & Niu, D. (2021). The microstructure and durability of fly ash-based geopolymer concrete: A review. Ceramics International, 47(21), 29550–29566. https://doi.org/10.1016/j.ceramint.2021.07.190
  • Guo, C., Wang, K., Liu, M., Li, X., & Cui, X. (2016). Preparation and characterization of acid-based geopolymer using metakaolin and disused polishing liquid. Ceramics International, 42(7), 9287–9291. https://doi.org/10.1016/j.ceramint.2016.02.073
  • Hassan, A., Arif, M., & Shariq, M. (2020). A review of properties and behaviour of reinforced geopolymer concrete structural elements-A clean technology option for sustainable development. Journal of Cleaner Production, 245, 118762. https://doi.org/10.1016/j.jclepro.2019.118762
  • Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., & Hussein, A. A. (2017). Geopolymer mortars as sustainable repair material: A comprehensive review. Renewable and Sustainable Energy Reviews, 80, 54–74. https://doi.org/10.1016/j.rser.2017.05.076
  • Hussin, M. W., Bhutta, M. A. R., Azreen, M., Ramadhansyah, P. J., & Mirza, J. (2015). Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures, 48(3), 709–720. https://doi.org/10.1617/s11527-014-0251-5
  • Kani, E. N., Allahverdi, A., & Provis, J. L. (2012). Efflorescence control in geopolymer binders based on natural pozzolan. Cement and Concrete Composites, 34(1), 25–33. https://doi.org/10.1016/j.cemconcomp.2011.07.007
  • Kantarcı, F., Türkmen, İ., & Ekinci, E. (2019). Optimization of production parameters of geopolymer mortar and concrete: A comprehensive experimental study. Construction and Building Materials, 228, 116770. https://doi.org/10.1016/j.conbuildmat.2019.116770
  • Ken, P. W., Ramli, M., & Ban, C. C. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395.
  • Kim, Y. Y., Lee, B. J., Saraswathy, V., & Kwon, S. J. (2014). Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Scientific World Journal, 2014, 1–10.
  • Kosor, T., Nakić-Alfirević, B., & Svilović, S. (2016). Geopolymer depolymerization index. Vibrational Spectroscopy, 86, 143–148. https://doi.org/10.1016/j.vibspec.2016.07.004
  • Kovalchuk, G., Fernandez-Jimenez, A., & Palomo, A. (2007). Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II. Fuel, 86(3), 315–322. https://doi.org/10.1016/j.fuel.2006.07.010
  • Kuenzel, C., & Ranjbar, N. (2019). Dissolution mechanism of fly ash to quantify the reactive aluminosilicates in geopolymerisation. Resources, Conservation and Recycling, 150, 104421. https://doi.org/10.1016/j.resconrec.2019.104421
  • Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. https://doi.org/10.1016/j.conbuildmat.2018.01.129
  • Lee, N. K., Kim, E. M., & Lee, H. K. (2016). Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex. Construction and Building Materials, 113, 264–272. https://doi.org/10.1016/j.conbuildmat.2016.03.055
  • Lingyu, T., Dongpo, H., Jianing, Z., & Hongguang, W. (2021). Durability of geopolymers and geopolymer concretes: A review. Revıews on Advanced Materıals Scıence, 60(1), 1–14. https://doi.org/10.1515/rams-2021-0002
  • Lo, K. W., Lin, K. L., Cheng, T. W., Chang, Y. M., & Lan, J. Y. (2017). Effect of nano-SiO2 on the alkali-activated characteristics of spent catalyst metakaolin-based geopolymers. Construction and Building Materials, 143, 455–463. https://doi.org/10.1016/j.conbuildmat.2017.03.152
  • Madheswaran, C. K., Gnanasundar, G., & Gopalakrishnan, N. (2013). Effect of molarity in geopolymer concrete. International Journal of Civil Structural Engineering, 4, 106–115.
  • Matalkah, F., Ababneh, A., & Aqel, R. (2022). Effects of nanomaterials on mechanical properties, durability characteristics and microstructural features of alkali-activated binders: A comprehensive review. Construction and Building Materials, 336, 127545. https://doi.org/10.1016/j.conbuildmat.2022.127545
  • McLellan, B. C., Williams, R. P., Lay, J., Van Riessen, A., & Corder, G. D. (2011). Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. Journal of Cleaner Production, 19(9–10), 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010
  • Mustakim, S. M., Das, S. K., Mishra, J., Aftab, A., Alomayri, T. S., Assaedi, H. S., & Kaze, C. R. (2021). Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon, 13(8), 2415–2428. https://doi.org/10.1007/s12633-020-00593-0
  • Nazari, A., & Riahi, S. (2011). The effects of Cr2O3 nanoparticles on strength assessments and water permeability of concrete in different curing media. Materials Science and Engineering A, 528(3), 1173–1182. https://doi.org/10.1016/j.msea.2010.09.099
  • Nguyen, K. T., Lee, Y. H., Lee, J., & Ahn, N. (2013). Acid resistance and curing properties for green fly ash-geopolymer concrete. Journal of Asian Architecture and Building, 12(2), 317–322. https://doi.org/10.3130/jaabe.12.317
  • Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006. https://doi.org/10.1016/j.ceramint.2015.10.084
  • Özcan, A., & Karakoç, M. B. (2019). The resistance of blast furnace slag-and ferrochrome slag-based geopolymer concrete against acid attack. International Journal of Civil Engineering, 17(10), 1571–1583. https://doi.org/10.1007/s40999-019-00425-2
  • Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T., & Grutzeck, M. W. (1999). Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), 997–1004. https://doi.org/10.1016/S0008-8846(99)00074-5
  • Phoo-Ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S., & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Materials and Design, 55, 58–65. https://doi.org/10.1016/j.matdes.2013.09.049
  • Prakasam, G., Murthy, A. R., & Saffiq Reheman, M. (2020). Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar. Magazine of Concrete Research, 72(4), 207–216. https://doi.org/10.1680/jmacr.18.00059
  • Provis, J. L., Palomo, A., & Shi, C. J. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, 78, 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013
  • Provis, J. L., & Van Deventer, J. S. J. (2009). Geopolymers: Structures, processing, properties and ındustrial applications. Elsevier.
  • Ranjbar, N., & Zhang, M. (2020). Fiber-reinforced geopolymer composites: A review. Cement and Concrete Composites, 107, 103498. https://doi.org/10.1016/j.cemconcomp.2019.103498
  • Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. https://doi.org/10.1016/j.cemconcomp.2012.01.010
  • Scrivener, K. L., John, V. M., & Gartner, E. M. (2018). Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, 114, 2–26. https://doi.org/10.1016/j.cemconres.2018.03.015
  • Shaikh, F. U. A. (2016). Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. International Journal of Sustainable Built Environment, 5(2), 277–287. https://doi.org/10.1016/j.ijsbe.2016.05.009
  • Shaikh, F. U. A., Supit, S. W. M., & Sarker, P. K. (2014). A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes. Materials and Design, 60, 433–442. https://doi.org/10.1016/j.matdes.2014.04.025
  • Shi, C., & Stegemann, J. A. (2000). Acid corrosion resistance of different cementing materials. Cement and Concrete Research, 30(5), 803–808. https://doi.org/10.1016/S0008-8846(00)00234-9
  • Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
  • Stengel, T., Heinz, D., & Reger, J. (2009). Life cycle assessment of geopolymer concrete – what is the environmental benefit. Proc. 24th Biennial Conference of the Concrete Institute of Australia, September 17–19.
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H., & Alnahhal, M. F. (2017). Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–A review. Construction and Building Materials, 148, 62–84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
  • Temuujin, J., Minjigmaa, A., Lee, M., Chen-Tan, N., & van Riessen, A. (2011). Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions. Cement and Concrete Composites, 33(10), 1086–1091. https://doi.org/10.1016/j.cemconcomp.2011.08.008
  • Tennakoon, C. K. (2016). Assessment of properties of ambient cured geopolymer concrete for construction applications [Doctor of philosophy thesis]. Swinburne University of Technology.
  • Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Effect of Na2O content on durability of geopolymer mortars in sulphuric acid, World Acad. Science, Engineering and Technology, 3, 508–513.
  • Thokchom, S., Ghosh, P., & Ghosh, S. (2009). Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars. ARPN Journal of Engineering and Applied Science, 4, 28–32.
  • Toutanji, H., & Deng, Y. (2007). Comparison between organic and inorganic matrices for RC beams strengthened with carbon fiber sheets. Journal of Composites for Construction, 11(5), 507–513. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:5(507)
  • TS 706 EN 12620 + A1. (2009). Aggregates for concrete, Turkish Standards Institution, Ankara-Turkey.
  • TS 802. (2016). Design of concrete mixes. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1008. (2003). Mixing water for concrete-Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1097–6. (2013). Tests for mechanical and physical properties of aggregates - Part 6: Determination of particle density and water absorption, Turkish Standards Institution, Ankara-Turkey.
  • TS EN 1744–1:2009 + A1. (2013). Tests for chemical properties of aggregates - Part 1: Chemical analysis, Turkish Standards Institution, Ankara-Turkey,
  • Vafaei, M., Allahverdi, A., Dong, P., & Bassim, N. (2019). Durability performance of geopolymer cement based on fly ash and calcium aluminate cement in mild concentration acid solutions. Journal of Sustainable Cement-Based Materials, 8(5), 290–308.
  • Vinai, R., Rafeet, A., Soutsos, M., & Sha, W. (2016). The role of water content and paste proportion on physico-mechanical properties of alkali activated fly ash-ggbs concrete. Journal of Sustainable Metallurgy, 2(1), 51–61. https://doi.org/10.1007/s40831-015-0032-6
  • Wallah, S. E., & Rangan, B. V. (2006). Low-calcium fly ash-based geopolymer concrete: long-term properties. Research Report GC2. Faculty of Engineering, Curtin University of Technology.
  • Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O. (2001). Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment, 26(1), 303–329. https://doi.org/10.1146/annurev.energy.26.1.303
  • Zakka, W. P., Lim, N., & Khun, M. C. (2021). A scientometric review of geopolymer concrete. Journal of Cleaner Production, 280, 124353. https://doi.org/10.1016/j.jclepro.2020.124353
  • Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Geopolymer foam concrete: an emerging material for sustainable construction. Construction and Building Materials, 56, 113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081
  • Zivica, V., & Bajza, A. (2001). Acidic attack of cement based materials—a review: Part 1. Principle of acidic attack. Construction and Building Materials, 15(8), 331–340. https://doi.org/10.1016/S0950-0618(01)00012-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.