0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aerodynamic noise analysis of the skirting board under an ultra-high-speed train based on bidimensional empirical mode decomposition

, , &
Received 02 Feb 2024, Accepted 17 Jul 2024, Published online: 02 Aug 2024
 

ABSTRACT

The grille located in the lower part of the train often forms a grille-cavity structure in the equipment bay’s surface. The issue of flow-induced sound of this structure becomes more significant at high speeds. In this study, we focus on a skirting board with a grille, that is simplified as a grille-cavity structure. We use DDES in combination with modal decomposition, to analyze the fluidization mechanism of the structure. The results indicate that the shear oscillation at the opening of the cavity is more pronounced at ultra-high speed. Moreover, it has been shown that both POD and BEMD can accurately separate and identify coherent structures in the flow field. BEMD has higher accuracy. And the flow is primarily dominated by low-frequency acoustic oscillation. Finally, when we compare three grille configurations (V, ᴖ), we find that the grille’s presence mitigates the cavity’s aerodynamic noise, especially when using a -shaped grille.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [U1934203].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 306.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.