0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Aerodynamic noise analysis of the skirting board under an ultra-high-speed train based on bidimensional empirical mode decomposition

, , &
Received 02 Feb 2024, Accepted 17 Jul 2024, Published online: 02 Aug 2024

References

  • Thompson DJ. Railway noise and vibration: mechanisms, modeling and means of control. Oxford: Elsevier; 2008.
  • Talotte C. Aerodynamic noise: a critical survey. J Sound Vib. 2000;231(3):549–562. doi: 10.1006/jsvi.1999.2544
  • Iglesias EL, Thompson DJ, Smith M, et al. Anechoic wind tunnel tests on high-speed train bogie aerodynamic noise. Int J Rail Transp. 2017;5(2):87–109. doi: 10.1080/23248378.2016.1274685
  • Li ZM, Li QL, Yang ZG. Flow structure and far-field noise of high-speed train under ballast track. J Wind Eng Ind Aerodyn. 2022;220:104858. doi: 10.1016/j.jweia.2021.104858
  • Minelli AG, Yao HD, Andersson N, et al. An aeroacoustic study of the flow surrounding the front of a simplified ICE3 high-speed train model - ScienceDirect. Appl Acoust. 2023;160:107125. doi: 10.1016/j.apacoust.2019.107125
  • Qiu XW, Li XZ, Zheng J, et al. Fluctuating wind pressure on vertical sound barrier during two high-speed trains passing each other. Int J Rail Transp. 2022;11(1):111–128. doi: 10.1080/23248378.2022.2062062
  • Huang ZX, Huang HJ, Zeng WP, et al. Structure clearance design in wind tunnel tests with implications for aerodynamic drag of high-speed trains. Int J Rail Transp. 2022;11(6):961–972. doi: 10.1080/23248378.2022.2123862
  • Dai ZY, Li T, Zhou N, et al. Numerical simulation and optimization of aerodynamic uplift force of a high-speed pantograph. Rail Eng Sci. 2022;30(1):117–128. doi: 10.1007/s40534-021-00258-7
  • Zhu JY, Cheng GD, Li QL, et al. Effect of bogie fairing on aerodynamic and aeroacoustic behaviour of a high-speed train nose car. Int J Rail Transp. 2023:1–17. doi: 10.1080/23248378.2023.2250784
  • Muld TW, Gunilla E, Dan SH. Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition. Comput Fluid. 2012;57:87–97. doi: 10.1016/j.compfluid.2011.12.012
  • Lu YB, Wang TT, Shi FC, et al. A prompt design method of railway tunnel hoods for micro-pressure wave mitigation using CFD-based POD reconstruction. Build Environ. 2024;250:111166. doi: 10.1016/j.buildenv.2024.111166
  • Bell JR, Burton B, Thompson MC, et al. Dynamics of trailing vortices in the wake of a generic high-speed train. J Fluid Struct. 2016;65:238–256. doi: 10.1016/j.jfluidstructs.2016.06.003
  • Gupta R, Ansell PJ. Flow evolution and unsteady spectra of dynamic stall at transitional Reynolds numbers. Aiaa J. 2020;58(8):3272–3285. doi: 10.2514/1.J059040
  • Cheng C, Li W, Duran L, et al. Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J Fluid Mech. 2019;870:1037–1071. doi: 10.1017/jfm.2019.272
  • E HN, Shen Z, R LS, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A. 1998;454(1971):903–995. doi: 10.1098/rspa.1998.0193
  • Sever AC, Rockwell D. Oscillations of shear flow along with a slotted plate: small- and large-scale structures. J Fluid Mech. 2005;530:213–222. doi: 10.1017/S0022112005003721
  • Celik E, Sever AC, Kawata T, et al. Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp. Exp Fluids. 2007;42(4):639–651. doi: 10.1007/s00348-007-0272-8
  • Zhang YC, Xu YG, Chen XD, et al. Excitation condition for self-sustained oscillation in flow past a louvered cavity. J Mech. 2017;33(4):535–544. doi: 10.1017/jmech.2017.43
  • Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. Rech Aerospatiale. 1994;1(1):5–21.
  • Huang SS, Hemida H, Yang MZ. Numerical calculation of the slipstream generated by a CRH2 high-speed train. Proc Inst Mech Eng F J Rail Rapid Transit. 2016;230(1):103–116. doi: 10.1177/0954409714528891
  • Liu JL, Yu MG, Tian AQ, et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train. J Mech Eng. 2018;54(4):231–237. doi: 10.3901/JME.2018.04.231
  • Yang DG, Li JQ, Fan ZL, et al. Aerodynamic characteristics of tran sonic and supersonic flow over rectangular cavities. Flow, Turbul Combust. 2010;84(4):639–652. doi: 10.1007/s10494-010-9246-7
  • Weng Z, Wang X, Liu C, et al. Unsteady flow characteristics and noise reduction control methods of a geometrically complex weapons bay. Acta Aerodynamica Sin. 2022;40(3):169–174.
  • Zhu JY, Hu ZW, Thompson DJ. Flow simulation and aerodynamic noise prediction for a high-speed train wheelset. Int J Aeroacoust. 2014;13(7–8):533–552. doi: 10.1260/1475-472X.13.7-8.533
  • Zhang QS, Liu YZ, Wang SF. The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. J Fluid Struct. 2014;49:53–72. doi: 10.1016/j.jfluidstructs.2014.04.002
  • Souza LF, Miotto RF, Wolf W. Analysis of transient and intermittent flows using a multidimensional empirical mode decomposition. Theor. Comput. Fluid Dyn. 2024:1–21. doi: 10.1007/s00162-024-00689-y
  • Sirovich L. Turbulence and the dynamics of coherent structures. I Coherent Struct Q Appl Math. 1987;45(3):561–571. doi: 10.1090/qam/910462
  • Plentovich EB, Stallings RL, Tracy MB. Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results. NASA Langley Research Center; 1993. Hampton (VA). Tech. paper TP-3358.
  • Kim H, Hu ZW, Thompson DJ. Numerical investigation of the effect of cavity flow on high-speed train pantograph aerodynamic noise. J Wind Eng Ind Aerodyn. 2020;201:104159. doi: 10.1016/j.jweia.2020.104159
  • Stahl S. Advances in modeling the aeroacoustic coupling of supersonic dual impinging jets [in American] [ PhD thesis]. (OH) State: The Ohio State University; 2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.