1,074
Views
7
CrossRef citations to date
0
Altmetric
Mitogenome Announcement

Complete mitochondrial genome sequence of the food fermentation fungus, Aspergillus luchuensis

ORCID Icon, ORCID Icon, , , , & show all
Pages 945-946 | Received 27 Oct 2018, Accepted 02 Nov 2018, Published online: 20 Feb 2019

Abstract

Aspergillus luchuensis is a filamentous fungus used for food and alcohol fermentation in many Asian countries. Here, we reported the complete mitochondrial genome sequence of A. luchuensis isolated from fermented soybean brick, called as Meju, in Korea. Its mitochondrial genome was successfully assembled from raw reads sequenced using MiSeq by Velvet and GapCloser. Total length of the mitochondrial genome is 31,228 bp and encoded 44 genes (16 protein-coding genes, two rRNAs, and 26 tRNAs). Nucleotide sequence of coding region takes over 25.6%, and overall GC content is 26.4%. Phylogenetic tree of mitochondrial genomes presented A. luchuensis and Aspergillus kawachii are clustered in one clade. This mitochondrial genome can be used for further analyses of Aspergillus mitochondrial comparative genomics to improve understanding of diverse Aspergillus species.

Aspergillus luchuensis is a filamentous fungus that belongs to Aspergillus section Nigri (Samson et al. Citation2011) and is an important species for food fermentations in East Asia (Hong et al. Citation2013). For example, A. luchuensis has been widely used for producing distilled alcoholic beverages, such as awamori and shoju in Japan, and makgeolli in Korea (Inui Citation1901a, Citation1901b; Yu et al. Citation2004; Hong et al. Citation2014).

The hyphae of A. luchuensis were collected from fermented soybean brick, Meju, in South Korea and its DNA was extracted by using a DNeasy Plant Mini kit (QIAGEN, Hilden, Germany). Raw data generated by MISeq were subject to de novo assembly done by Velvet 1.2.10 (Zerbino and Birney Citation2008) and gap filling with SOAPGapCloser 1.12 (Zhao et al. 2011) to get complete mitochondrial genome. All assembled sequences were confirmed by alignment results generated by BWA 0.7.17 (Li Citation2013) and SAMtools 1.9 (Li et al. Citation2009). Geneious R11 11.0.5 (Biomatters Ltd, Auckland, New Zealand) was used to annotate its mitochondrial genome by comparing with that of Aspergillus kawachii (AP012272; Futagami et al. Citation2011). Voucher sample was deposited into Korean Agricultural Culture Collection (KACC) with accession number KACC-46490.

The length of A. luchuensis mitochondrial genome (GenBank accession is MK061298) is 31,228 bp, which is median length in comparison to eight available Aspergillus mitochondrial genomes (Futagami et al. Citation2011; Joardar et al. Citation2012; Xu et al. Citation2018); while average length of eight mitochondrial genomes is 34,446.38 bp, which is higher by 5.2 kb due to extremely large size of Aspergillus egyptiacus mitochondrial genome (Xu et al. Citation2018). A. luchuensis mitochondrial genome encoded 44 genes consisting of 16 protein-coding genes, two rRNAs, and 26 tRNAs. Nucleotide sequence of coding region takes over 25.6%, and overall GC content is 26.4%, which are similar to those of A. kawachii mitochondrial genome (Futagami et al. Citation2011).

Sequence alignment of nine Aspergillus mitochondrial genomes and one Penicillium mitochondrial genome as an outgroup was conducted by MAFFT 7.388 (Katoh and Standley Citation2013). The neighbor joining tree was constructed using MEGA X with 10,000 bootstrap replicates (Kumar et al. Citation2018). Based on phylogenetic tree, A. luchuensis is located in the clade of section Nigri in Subgenus Circumdati and it is similar to A. kawachii (Futagami et al. Citation2011; ). Interestingly, based on the Aspergillus taxonomy (Houbraken and Samson Citation2011; Kocsubé et al. Citation2016), subgenus Circumdati is split into two clades: sections Nigri and Flavi (). A. luchuensis mitochondrial genome can be used for further analyses of Aspergillus mitochondrial comparative genomics to improve understanding of Aspergillus taxonomy.

Figure 1. Neighbor joining phylogenetic tree (bootstrap repeat is 10,000) of eight Aspergillus mitochondrial genomes and one Penicillium mitochondrial genome:Aspergillus luchuensis (MK061298, this study), Aspergillus kawachii (AP012272), Aspergillus egyptiacus (MH041273), Aspergillus tubingensis (NC_007597), Aspergillus nidulans (NC_017896), Aspergillus flavus (NC_026920), Aspergillus niger (NC_007445), Aspergillus fumigatus (NC_017016), and Penicillium chrysogenum (JMSF01000018).

Figure 1. Neighbor joining phylogenetic tree (bootstrap repeat is 10,000) of eight Aspergillus mitochondrial genomes and one Penicillium mitochondrial genome:Aspergillus luchuensis (MK061298, this study), Aspergillus kawachii (AP012272), Aspergillus egyptiacus (MH041273), Aspergillus tubingensis (NC_007597), Aspergillus nidulans (NC_017896), Aspergillus flavus (NC_026920), Aspergillus niger (NC_007445), Aspergillus fumigatus (NC_017016), and Penicillium chrysogenum (JMSF01000018).

Disclosure statement

The authors declare that they have no competing interests.

Additional information

Funding

This study was carried out with the support of project no. PJ01354902 of the National Institute of Agricultural Science, Rural Development Administration, Republic of Korea to SBH and supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2017R1D1A3B06035312) to KHH.

References

  • Futagami T, Mori K, Yamashita A, Wada S, Kajiwara Y, Takashita H, Omori T, Takegawa K, Tashiro K, Kuhara S, et al. 2011. Genome sequence of the white koji mold Aspergillus kawachii IFO 4308, used for brewing the Japanese distilled spirit shochu. Eukaryotic Cell. 10:1586–1587.
  • Hong S-B, Lee M, Kim D-H, Varga J, Frisvad JC, Perrone G, Gomi K, Yamada O, Machida M, Houbraken J, et al. 2013. Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS One. 8:e63769.
  • Hong S-B, Yamada O, Samson RA. 2014. Taxonomic re-evaluation of black koji molds. Appl Microbiol Biotechnol. 98:555–561.
  • Houbraken J, Samson R. 2011. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol. 70:1–51.
  • Inui T. 1901a. Ryukyu awamori hakko kin chyosa houkokusyo. J Chem Soc Japan. 4:1421–1430.
  • Inui T. 1901b. Untersuchungen uber die niederen Organismen welche sich bei der Zubereitung des alkoholischen Getrankes "Awamori" betheiligen. J Coll Sci. 15:465–476.
  • Joardar V, Abrams NF, Hostetler J, Paukstelis PJ, Pakala S, Pakala SB, Zafar N, Abolude OO, Payne G, Andrianopoulos A, et al. 2012. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability. BMC Genomics. 13:698.
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780.
  • Kocsubé S, Perrone G, Magistà D, Houbraken J, Varga J, Szigeti G, Hubka V, Hong S-B, Frisvad JC, Samson R. 2016. Aspergillus is monophyletic: evidence from multiple gene phylogenies and extrolites profiles. Stud Mycol. 85:199–213.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35:1547–1549.
  • Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Preprint arXiv. 13033997.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25:2078–2079.
  • Samson R, Peterson S, Frisvad JC, Varga J. 2011. New species in Aspergillus section Terrei. Stud Mycol. 69:39–55.
  • Xu Z, Wu L, Liu S, Chen Y, Zhao Y, Yang G. 2018. Structure characteristics of Aspergillus egyptiacus mitochondrial genome, an important fungus during the fermentation of dark tea. Mitochondrial DNA B. 3:1135–1136.
  • Yu T-S, Yeo S-H, Kim H-S. 2004. A new species of hyphomycetes, Aspergillus coreanus sp. nov., isolated from traditional Korean nuruk. J Microbiol Biotechnol. 14:182–187.
  • Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18:821–829.
  • Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics.12:S2.