673
Views
9
CrossRef citations to date
0
Altmetric
Mitogenome Announcement

The comparison of the complete chloroplast genome of Suaeda japonica Makino presenting different external morphology (Amaranthaceae)

ORCID Icon, ORCID Icon &
Pages 1616-1618 | Received 30 Dec 2019, Accepted 07 Jan 2020, Published online: 31 Mar 2020

Abstract

Suaeda japonica Makino is an annual herb found in the seashore in Korea and Japan. In this study, we presented second complete chloroplast genome of S. japonica which is 152,112 bp long and has four subregions: 83,620 bp of large single-copy (LSC) and 18,102 bp of small single-copy (SSC) regions are separated by 25,195 bp of inverted repeat (IR) regions including 128 genes (83 protein-coding genes, 8 rRNAs, and 37 tRNAs). The overall GC content of the chloroplast genome is 36.4% and those in the LSC, SSC, and IR regions are 34.2%, 29.2%, and 42.7%, respectively. Phylogenetic trees show that two S. japonica is monophyletic. This chloroplast genome suggests further investigation to find the relationship between morphological variations and genetic diversity.

Suaeda japonica Makino (Amarathaeceae) is an annual halophyte, growing up to 20–50 cm with a woody stem (Chung Citation1992). It is distributed in a tidal flat in the West Sea of Korean peninsula and Kyushu in Japan (Hara and Kurosawa Citation1963; Chung Citation1992). Interestingly, two morphological types of S. japonica were identified: (i) more slender and slightly smaller stems and branches (Julpo type) and (ii) robust woody with thick stems and branches and slightly taller (Gwanghwa type) (). To understand the genetic diversity of the two types related to morphological differences, chloroplast genome of the latter was sequenced.

Figure 1. (A) Neighbor joining (bootstrap repeat is 10,000) and maximum likelihood (bootstrap repeat is 1,000) phylogenetic trees of 16 Amaranthaceae complete chloroplast genomes: Suaeda japonica (MK764271 in this study and MK558824 (Kim Y et al. Citation2019)), Suaeda malacosperma (NC_039180; Park J-S et al. Citation2018), Beta vulgaris (EF534108), Salicornia brachiate (NC_027224), Salicornia europaea (NC_027225), Salicornia bigelovii (NC_027226), Bienertia sinuspersici (KU726550; Kim B et al. Citation2016), Haloxylon ammodendron (NC_027668; Dong et al. Citation2016), Haloxylon persicum (NC_027669; Dong et al. Citation2016), Amaranthus tricolor (KX094399), Amaranthus hypochondriacus (NC_030770 and MG836505; Hong et al. Citation2019), Amaranthus caudatus (NC_040143; Hong et al. Citation2019), Amaranthus hybridus subsp. cruentus (MG836506 and MG836507; Hong et al. Citation2019), and Gymnocarpos przewalskii (NC_036812; Yang et al. Citation2018). Phylogenetic tree was drawn based on neighbor-joining tree. The numbers above branches indicate bootstrap support values of maximum likelihood phylogenetic tree. (B) displays S. japonica (Gwanghwa type). (C) shows S. japonica (Julpo type) used in the previous study.

Figure 1. (A) Neighbor joining (bootstrap repeat is 10,000) and maximum likelihood (bootstrap repeat is 1,000) phylogenetic trees of 16 Amaranthaceae complete chloroplast genomes: Suaeda japonica (MK764271 in this study and MK558824 (Kim Y et al. Citation2019)), Suaeda malacosperma (NC_039180; Park J-S et al. Citation2018), Beta vulgaris (EF534108), Salicornia brachiate (NC_027224), Salicornia europaea (NC_027225), Salicornia bigelovii (NC_027226), Bienertia sinuspersici (KU726550; Kim B et al. Citation2016), Haloxylon ammodendron (NC_027668; Dong et al. Citation2016), Haloxylon persicum (NC_027669; Dong et al. Citation2016), Amaranthus tricolor (KX094399), Amaranthus hypochondriacus (NC_030770 and MG836505; Hong et al. Citation2019), Amaranthus caudatus (NC_040143; Hong et al. Citation2019), Amaranthus hybridus subsp. cruentus (MG836506 and MG836507; Hong et al. Citation2019), and Gymnocarpos przewalskii (NC_036812; Yang et al. Citation2018). Phylogenetic tree was drawn based on neighbor-joining tree. The numbers above branches indicate bootstrap support values of maximum likelihood phylogenetic tree. (B) displays S. japonica (Gwanghwa type). (C) shows S. japonica (Julpo type) used in the previous study.

Total DNA of Gwanghwa type of S. japonica isolated in Geonpyeong-ri, Ganghwa-gun, Incheon (Voucher in InfoBoss Cyber Herbarium (IN); IB-01021) was extracted from fresh leaves by using a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). Genome sequencing was performed using HiSeqX at Macrogen Inc., Korea. De novo assembly and confirmation were done by Velvet 1.2.10 (Zerbino and Birney Citation2008), SOAPGapCloser 1.12 (Zhao et al. Citation2011), BWA 0.7.17 (Li Citation2013), and SAMtools 1.9 (Li et al. Citation2009). Geneious R11 11.1.5 (Biomatters Ltd., Auckland, New Zealand) was used for annotation based on S. japonica chloroplast Julpo type (MK558824; Kim et al. Citation2019).

Suaeda japonica chloroplast genome (MK764271) is 152,112 bp long (GC ratio is 36.4%) and has four subregions: 83,620 bp of large single-copy (LSC; 34.2%) and 18,102 bp of small single-copy (SSC; 29.2%) regions are separated by 25,195 bp of inverted repeat (IR; 42.7%) region. It contains 128 genes (83 protein-coding genes, 8 rRNAs, and 37 tRNAs); 17 genes (six protein-coding genes, four rRNAs, and seven tRNAs) are duplicated in IR regions.

In comparison to S. japonica Julpo type chloroplast genome, three single nucleotide polymorphisms (SNPs) and three insertions and deletions (INDELs) are identified: one SNP and two INDEL are intergenic in LSC. Two SNPs are synonymous in ndhA and non-synonymous in ycf1, respectively,and one INDEL is in ndhA intron. Number of variations of S. japonica chloroplast genomes are similar to those of Coffea arabica (Min, Kim, Xi, Heo, et al. Citation2019; Park, Kim, Xi, Heo Citation2019; Park, Kim, Xi, Nho, et al. Citation2019; Park, Xi, et al. Citation2019), Camellia japonica (Park, Kim, Xi, Oh, et al. Citation2019), Abeliophyllum distichum (Min, Kim, Xi, Jang, et al. Citation2019), and Marchantia polymorpha subsp. ruderalis (Kwon et al. Citation2019a) presenting less than 5 SNPs and INDELs; while Dysphania pumilio contains 25 SNPs and 2 INDELs (Kwon et al. Citation2019b). Although variations on organelle genomes of M. polymorpha subsp. ruderalis are very low (Kwon et al. Citation2019a, Citation2019b), its whole genome contains enough variations, so more investigations of S. japonica should be conducted.

Sixteen complete chloroplast genome sequences of Amaranthaceae including S. japonica were aligned by MAFFT 7.450 (Katoh and Standley Citation2013) for constructing bootstrapped neighbor joining and maximum likelihood trees using MEGA X (Kumar et al. Citation2018). Phylogenetic trees show that two S. japonica chloroplasts are clustered (), indicating that the genetic distance between two types is low in contrast to that of their morphologies.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Chung Y. 1992. A taxonomic study of the Korean Chenopodiaceae [PhD thesis]. Seoul (Korea): Sungkyunkwan University (in Korean).
  • Dong W, Xu C, Li D, Jin X, Li R, Lu Q, Suo Z. 2016. Comparative analysis of the complete chloroplast genome sequences in psammophytic Haloxylon species (Amaranthaceae). Peer J. 4:e2699.
  • Hara H, Kurosawa S. 1963. Cytotaxonomical notes on some Japanese plants (2). J Jap Bot. 38:113–116.
  • Hong S-Y, Cheon K-S, Yoo K-O, Lee H-O, Mekapogu M, Cho K-S. 2019. Comparative analysis of the complete chloroplast genome sequences of three Amaranthus species. Plant Genet Resour. 17(3):245–254.
  • Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.
  • Kim B, Kim J, Park H, Park J. 2016. The complete chloroplast genome sequence of Bienertia sinuspersici. Mitochondrial DNA Part B. 1(1):388–389.
  • Kim Y, Park J, Chung Y. 2019. The complete chloroplast genome of Suaeda japonica Makino (Amaranthaceae). Mitochondrial DNA Part B. 4(1):1505–1507.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.
  • Kwon W, Kim Y, Park J. 2019a. The complete chloroplast genome of Korean Marchantia polymorpha subsp. ruderalis Bischl. & Boisselier: low genetic diversity between Korea and Japan. Mitochondrial DNA Part B. 4(1):959–960.
  • Kwon W, Kim Y, Park J. 2019b. The complete mitochondrial genome of Korean Marchantia polymorpha subsp. ruderalis Bischl. & Boisselier: inverted repeats on mitochondrial genome between Korean and Japanese isolates. Mitochondrial DNA Part B. 4(1):769–770.
  • Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 13033997.
  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079.
  • Min J, Kim Y, Xi H, Heo K-I, Park J. 2019. The complete chloroplast genome of coffee tree, Coffea arabica L. ‘Typica’ (Rubiaceae). Mitochondrial DNA Part B. 4(2):2240–2241.
  • Min J, Kim Y, Xi H, Jang T, Kim G, Park J, Park J-H. 2019. The complete chloroplast genome of a new candidate cultivar, Sang Jae, of Abeliophyllum distichum Nakai (Oleaceae): initial step of A. distichum intraspecies variations atlas. Mitochondrial DNA Part B. 4(2):3716–3718.
  • Park J, Kim Y. 2019. The second complete chloroplast genome of Dysphania pumilio (R. Br.) mosyakin & clemants (Amranthaceae): intraspecies variation of invasive weeds. Mitochondrial DNA B. 4:1428–1429.
  • Park J, Kim Y, Xi H, Heo K-I. 2019. The complete chloroplast genome of coffee tree, Coffea arabica L. ‘Blue Mountain’ (Rubiaceae). Mitochondrial DNA Part B. 4(2):2436–2437.
  • Park J, Kim Y, Xi H, Nho M, Woo J, Seo Y. 2019. The complete chloroplast genome of high production individual tree of Coffea arabica L. (Rubiaceae). Mitochondrial DNA Part B. 4(1):1541–1542.
  • Park J, Kim Y, Xi H, Oh YJ, Hahm KM, Ko J. 2019. The complete chloroplast genome of common camellia tree in Jeju island, Korea, Camellia japonica L.(Theaceae): intraspecies variations on common camellia chloroplast genomes. Mitochondrial DNA Part B. 4(1):1292–1293.
  • Park J, Xi H, Kim Y, Heo K-I, Nho M, Woo J, Seo Y, Yang JH. 2019. The complete chloroplast genome of cold hardiness individual of Coffea arabica L.(Rubiaceae). Mitochondrial DNA Part B. 4(1):1083–1084.
  • Park J-S, Choi I-S, Lee D-H, Choi B-H. 2018. The complete plastid genome of Suaeda malacosperma (Amaranthaceae/Chenopodiaceae), a vulnerable halophyte in coastal regions of Korea and Japan. Mitochondrial DNA Part B. 3(1):382–383.
  • Yang Z, Zhang Y, Pan L, Fu C. 2018. Characterization of the complete chloroplast genome of Gymnocarpos przewalskii, an endangered species in China and Mongolia. Conservation Genet Resour. 10(4):717–721.
  • Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research. 18(5):821–829.
  • Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 12(Suppl 14):S2.