291
Views
2
CrossRef citations to date
0
Altmetric
Articles

Gradient boosted trees for spatial data and its application to medical imaging data

, , , , , , , , & ORCID Icon show all
Pages 165-179 | Published online: 09 Nov 2021
 

Abstract

Boosting Trees are one of the most successful statistical learning approaches that involve sequentially growing an ensemble of simple regression trees (“weak learners”). This paper proposes a gradient Boosted Trees algorithm for Spatial Data (Boost-S) with covariate information. Boost-S integrates the spatial correlation into the classical framework of eXtreme Gradient Boosting. Each tree is constructed by solving a regularized optimization problem, where the objective function takes into account the underlying spatial correlation and involves two penalty terms on tree complexity. A computationally-efficient greedy heuristic algorithm is proposed to obtain an ensemble of trees. The proposed Boost-S is applied to the spatially-correlated FDG-PET (fluorodeoxyglucose-positron emission tomography) imaging data collected from clinical trials of cancer chemoradiotherapy. Our numerical investigations successfully demonstrate the advantages of the proposed Boost-S over existing approaches for this particular application.

Disclosure statement

JZ declares support from AstraZeneca Pharmaceuticals, LP and serves as a consultant for AstraZeneca, Elekta, and Ion Beam Applications. The other authors report no conflicts of interest.

Additional information

Funding

This work was supported by the National Institutes of Health under Grant R01CA204301.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.