291
Views
2
CrossRef citations to date
0
Altmetric
Articles

Gradient boosted trees for spatial data and its application to medical imaging data

, , , , , , , , & ORCID Icon show all

References

  • Banerjee, S. (2017). High-dimensional Bayesian geostatistics. Bayesian Analysis, 12(2), 583–614. https://doi.org/10.1214/17-BA1056R
  • Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data (2nd ed.). CRC Press.
  • Banerjee, S., Gelfand, A. E., Finley, A. O., & Sang, H. (2008). Gaussian Predictive process models for large spatial data sets. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 70(4), 825–848. https://doi.org/10.1111/j.1467-9868.2008.00663.x
  • Berliner, L. M. (2003). Physical-statistical modeling in geophysics. Journal of Geophysical Research-Atmospheres, 108, 3–10.
  • Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 192–225. https://doi.org/10.1111/j.2517-6161.1974.tb00999.x
  • Bowen, S. R., Hippe, D. S., Chaovalitwongse, W. A., Duan, C., Thammasorn, P., Liu, X., Miyaoka, R. S., Vesselle, H. J., Kinahan, P. E., Rengan, R., & Zeng, J. (2019). Voxel forecast for precision oncology: Predicting spatially variant and multiscale cancer therapy response on longitudinal quantitative molecular imaging. Clinical Cancer Research, 25(16), 5027–5037. https://doi.org/10.1158/1078-0432.CCR-18-3908
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Brown, P. E., Karesen, K. F., Roberts, G. O., & Tonellato, S. (2000). Blur-generated non-separable space-time models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4), 847–860. https://doi.org/10.1111/1467-9868.00269
  • Carlin, B. P., & Banerjee, S. (2003). Hierarchical multivariate CAR models for spatio-temporally correlated survival data (with discussion). Oxford University Press.
  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system [Paper presentation]. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
  • Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266–298. https://doi.org/10.1214/09-AOAS285
  • Cressie, N., & Huang, H. C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. Journal of the American Statistical Association, 94(448), 1330–1340. https://doi.org/10.1080/01621459.1999.10473885
  • Cressie, N., & Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 209–226. https://doi.org/10.1111/j.1467-9868.2007.00633.x
  • Cressie, N., & Wikle, C. (2011). Statistics for spatio-temporal data. John Wiley & Sons.
  • Datta, A., Banerjee, S., Finley, A. O., & Gelfand, A. E. (2016). Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets. Journal of the American Statistical Association, 111(514), 800–812. https://doi.org/10.1080/01621459.2015.1044091
  • de Melo, V. V., Ushizima, D. M., Baracho, S. F., & Coelho, R. C. (2018). Gradient boosting decision trees for echocardiogram images [Paper presentation]. International Joint Conference on Neural Networks (IJCNN) (pp. 1–8). https://doi.org/10.1109/IJCNN.2018.8489523
  • Ezzat, A., Jun, M., & Ding, Y. (2019). Spatio-temporal short-term wind forecast: A calibrated regime-switching method. The Annals of Applied Statistics, 13(3), 1484–1510. https://doi.org/10.1214/19-AOAS1243
  • Fang, X., Paynabar, K., & Gebraeel, N. (2019). Image-based prognostics using penalized tensor regression. Technometrics, 61(3), 369–384. https://doi.org/10.1080/00401706.2018.1527727
  • Fu, Y., Patel, B. K., Wu, T., Li, J., & Gao, F. (2020). Advanced medical imaging analytics in breast cancer diagnosis. In A. Smith (Ed.), Women in industrial and systems engineering, women in engineering and science. Springer.
  • Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. Journal of the American Statistical Association, 102(477), 321–331. https://doi.org/10.1198/016214506000000852
  • Fuentes, M., Chen, L., Davis, J. M., & Lackmann, G. M. (2005). Modeling and predicting complex space-time structures and patterns of coastal wind fields. Environmetrics, 16(5), 449–464. https://doi.org/10.1002/env.714
  • Ghosh, S. K., Bhave, P. E., Davis, J. M., & Lee, H. (2010). Spatio-temporal analysis of total nitrate concentrations using dynamic statistical models. Journal of the American Statistical Association, 105(490), 538–551. https://doi.org/10.1198/jasa.2010.ap07441
  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. Journal of the American Statistical Association, 97(458), 590–600. https://doi.org/10.1198/016214502760047113
  • Gneiting, T., Genton, M. G., & Guttorp, P. (2006). Geostatistical space-time models, stationarity, separability, and full symmetry. In B. Finkenstadt, L. Held, & V. Isham (Eds.), Statistical methods for spatio-temporal systems (pp. 151–175). Chapman & Hall.
  • Guinness, J., & Fuentes, M. (2015). Likelihood approximations for big nonstationary spatial-temporal lattice data. Statistica Sinica, 25, 329–349. https://doi.org/10.5705/ss.2013.240w
  • Guinness, J., & Stein, M. (2013). Interpolation of nonstationary high frequency spatial-temporal temperature data. Annals of Applied Statistics, 7, 1684–1708.
  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). Springer.
  • Higdon, D. (1998). A process-convolution approach to modeling temperatures in the North Atlantic Ocean. Environmental and Ecological Statistics, 5(2), 173–190. https://doi.org/10.1023/A:1009666805688
  • Hooten, M. B., & Wikle, C. K. (2008). A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with appliation to the Eurasian Collared-Dove. Environmental and Ecological Statistics, 15(1), 59–70. https://doi.org/10.1007/s10651-007-0040-1
  • Joseph, V. R. (2016). Space-filling designs for computer experiments: A review. Quality Engineering, 28(1), 28–35. https://doi.org/10.1080/08982112.2015.1100447
  • Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments. Biometrika, 102(2), 371–380. https://doi.org/10.1093/biomet/asv002
  • Katzfuss, M. (2017). A multi-resolution approximation for massive spatial datasets. Journal of the American Statistical Association, 112(517), 201–214. https://doi.org/10.1080/01621459.2015.1123632
  • Katzfuss, M., Stroud, J. R., & Wikle, C. K. (2020). Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models. Journal of the American Statistical Association, 115(530), 866–885. https://doi.org/10.1080/01621459.2019.1592753
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30, 3146–3154.
  • Krainski, E. T., Gomez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F., & Rue, H. (2019). Advanced spatial modeling with stochastic partial differential equations using R and INLA. Chapman and Hall/CRC.
  • Lenzi, A., Castruccio, S., Rue, H., & Genton, M. G. (2019). Improving Bayesian local spatial models in large data sets. arXiv:1907.06932.
  • Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(4), 423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
  • Liu, X., & Pan, R. (2020). Analysis of large heterogeneous repairable system reliability data with static system attributes and dynamic sensor measurement in big data environment. Technometrics, 62(2), 206–222. https://doi.org/10.1080/00401706.2019.1609584
  • Liu, X., Gopal, V., & Kalagnanam, J. (2018). A spatio-temporal modeling framework for weather radar image data in tropical Southeast Asia. The Annals of Applied Statistics, 12(1), 378–407. https://doi.org/10.1214/17-AOAS1064
  • Liu, X., Yeo, K. M., & Kalagnanam, J. (2018). A statistical modeling approach for spatio-temporal degradation data. Journal of Quality Technology, 50(2), 166–182. https://doi.org/10.1080/00224065.2018.1436833
  • Liu, X., Yeo, K. M., & Lu, S. Y. (2020). Statistical modeling for spatio-temporal data from stochastic convection-diffusion processes. Journal of the American Statistical Association, to Appear, arXiv:1910.10375.
  • Liu, X., Yeo, K. M., Hwang, Y. D., Singh, J., & Kalagnanam, J. (2016). A statistical modeling approach for air quality data based on physical dispersion processes and its application to ozone modeling. The Annals of Applied Statistics, 10(2), 756–785. https://doi.org/10.1214/15-AOAS901
  • Mondal, D., & Wang, C. (2019). A matrix-free method for spatial-temporal Gaussian state-space models. Statstica Sinica (to Appear), 29, 2205–2227.
  • Neuhaus, G. (1989). Rank tests with estimated scores and their application. Verlag.
  • Nishio, M., Nishizawa, M., Sugiyama, O., Kojima, R., Yakami, M., Kuroda, T., & Togashi, K. (2018). Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLOS One, 13(4), e0195875. https://doi.org/10.1371/journal.pone.0195875
  • Nychka, D., and Wikle, C., & Royle, J. A. (2002). Multiresolution models for nonstationary spatial covariance functions. Statistical Modelling, 2(4), 315–331. https://doi.org/10.1191/1471082x02st037oa
  • Oguz, B. U., Shinohara, R. T., Yushkevich, P. A., & Oguz, I. (2017). Gradient boosted trees for corrective learning. Machine Learning for Medical Imaging, 10541, 203–211.
  • Reich, B. J., Eidsvik, J., Guindani, M., Nail, A. J., & Schmidt, A. M. (2011). A class of covariate-dependent spatiotemporal covariance functions for the analysis of daily ozone concentration. The Annals of Applied Statistics, 5(4), 2425–2447. https://doi.org/10.1214/11-AOAS482
  • R-INLA. (2019). The R-INLA project. http://www.r-inla.org/.
  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
  • Schabenberger, O., & Gotway, C. A. (2005). Statistical methods for spatial data analysis. Chapman & Hall/CRC.
  • Schapire, R. E. (1999). A brief introduction to boosting. In Proceedings of the 16th International Joint Conference on Artificial Intelligence.
  • Sigrist, F. (2020). Gaussian process boosting. arXiv:2004.02653v2.
  • Sigrist, F., Kunsch, H. R., & Stahel, W. A. (2015). Stochastic partial differential equation based modelling of large space-time data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(1), 3–33. https://doi.org/10.1111/rssb.12061
  • Stein, M. L., Chi, Z., & Welty, L. J. (2004). Approximating likelihoods for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2), 275–296. https://doi.org/10.1046/j.1369-7412.2003.05512.x
  • Stroud, J. R., Muller, P., & Sanso, B. (2001). Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(4), 673–689. https://doi.org/10.1111/1467-9868.00305
  • Stroud, J. R., Stein, M. L., Lesht, B. M., Schwab, D. J., & Beletsky, D. (2010). An ensemble Kalman filter and smoother for satellite data assimilation. Journal of the American Statistical Association, 105(491), 978–990. https://doi.org/10.1198/jasa.2010.ap07636
  • Wang, K., Jiang, W., & Li, B. (2016). A spatial variable selection method for monitoring product surface. International Journal of Production Research, 54(14), 4161–4181. https://doi.org/10.1080/00207543.2015.1109723
  • Wikle, C. K., & Cressie, N. (1999). A dimension-reduced approach to space-time Kalman filtering. Biometrika, 86(4), 815–829. https://doi.org/10.1093/biomet/86.4.815
  • Xie, Y., Jiang, B., Gong, E., Li, Y., Zhu, G., Michel, P., Wintermark, M., & Zaharchuk, G. (2019). Use of gradient boosting machine learning to predict patient outcome in acute ischemic stroke on the basis of imaging, demographic, and clinical information. AJR. American Journal of Roentgenology, 212(1), 44–51. https://doi.org/10.2214/AJR.18.20260
  • Yan, H., Zhao, X., Hu, Z., & Du, D. (2019). Physics-based deep spatio-temporal metamodeling for cardiac electrical conduction simulation. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE) (pp. 152–157). IEEE.
  • Yao, B., & Yang, H. (2021). Spatiotemporal regularization for inverse ECG modeling. IISE Transactions on Healthcare Systems Engineering, 11(1), 11–23. https://doi.org/10.1080/24725579.2020.1823531
  • Yao, B., Zhu, R., & Yang, H. (2018). Characterizing the location and extent of myocardial infarctions with inverse ECG modeling and spatiotemporal regularization. IEEE Journal of Biomedical and Health Informatics, 22(5), 1445–1455. https://doi.org/10.1109/JBHI.2017.2768534
  • Yue, X., Wen, Y., Hunt, J. H., & Shi, J. (2020). Active learning for Gaussian process considering uncertainties, with an application to automatic shape control of composite fuselage. IEEE Transactions on Automation Science and Engineering, 18(1), 36–46.
  • Zang, Y., & Qiu, P. (2018). Phase I monitoring of spatial surface data from 3D printing. Technometrics, 60(2), 169–180. https://doi.org/10.1080/00401706.2017.1321585

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.