525
Views
140
CrossRef citations to date
0
Altmetric
Research Article

Clinical Relevance of P-Glycoprotein in Drug Therapy

&
Pages 417-454 | Published online: 12 Aug 2003
 

Abstract

The drug efflux transporter P-glycoprotein (P-gp) is known to confer multidrug resistance in cancer chemotherapy. The P-gp is highly expressed in many types of tumor cells, as well as many normal tissues, including the apical surface of intestinal epithelial cells, and the luminal surface of capillary endothelial cells in the brain. Because of its expression and localization, it has been suggested that P-gp plays an important role in cancer chemotherapy, intestinal absorption, and brain uptake. This review addresses the significance of the role of P-gp in cancer chemotherapy, drug absorption, and brain uptake. Based on the clinical and animal studies with P-gp modulators, it has become apparent that the role of P-gp in multidrug resistance is far less important compared to other biological factors. Although P-gp is highly expressed in both intestinal epithelial cells and endothelial cells of brain capillaries and functions as an efflux transporter in both organs, the magnitude of P-gp's impact on intestinal absorption and brain uptake of drugs is quantitatively very different. From animal and clinical studies, it is evident that P-gp plays a very important role in CNS penetration of drugs, whereas the effect of P-gp on drug absorption is not as important as generally believed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,816.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.