41
Views
76
CrossRef citations to date
0
Altmetric
Article

The Small Molecule Phenamil Induces Osteoblast Differentiation and Mineralization

, , , , , & show all
Pages 3905-3914 | Received 01 Jan 2009, Accepted 14 Apr 2009, Published online: 21 Mar 2023
 

Abstract

Stimulation of osteoblast differentiation from mesenchymal stem cells is a potential strategy for bone repair. Bone morphogenetic proteins (BMPs) that induce osteoblastic differentiation have been successfully used in humans to treat fractures. Here we outline a new approach to the stimulation of osteoblast differentiation using small molecules that stimulate BMP activity. We have identified the amiloride derivative phenamil as a stimulator of osteoblast differentiation and mineralization. Remarkably, phenamil acts cooperatively with BMPs to induce the expression of BMP target genes, osteogenic markers, and matrix mineralization in both mesenchymal stem cell lines and calvarial organ cultures. Transcriptional profiling of cells treated with phenamil led to the identification of tribbles homolog 3 (Trb3) as a mediator of its effects. Trb3 is induced by phenamil selectively in cells with osteoblastic potential. Both Trb3 and phenamil stabilize the expression of SMAD, the critical transcription factor in BMP signaling, by promoting the degradation of SMAD ubiquitin regulatory factor 1. Small interfering RNA-mediated knockdown of Trb3 blunts the effects of phenamil on BMP signaling and osteogenesis. Thus, phenamil induces osteogenic differentiation, at least in part, through Trb3-dependent promotion of BMP action. The synergistic use of small molecules such as phenamil along with BMPs may provide new strategies for the promotion of bone healing.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mcb.asm.org/ .

ACKNOWLEDGMENTS

We thank members of the Tontonoz laboratory for fruitful discussions.

P.T. is an Investigator of the Howard Hughes Medical Institute. This work was also supported by NIH grant HL090553 to P.T. and S.G.Y.

We have nothing to disclose.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.