43
Views
25
CrossRef citations to date
0
Altmetric
Article

Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns

, , &
Pages 2370-2381 | Received 09 Jan 2014, Accepted 08 Apr 2014, Published online: 20 Mar 2023
 

Abstract

Activation of the two ubiquitous families of protein kinases, protein kinase A (PKA) and protein kinase C (PKC), is thought to be independently coupled to stimulation of Gαs and Gαq, respectively. Live-cell confocal imaging of protein kinase C fluorescent protein fusion constructs revealed that simultaneous activation of Gαs and Gαq resulted in a differential translocation of the conventional PKCα to the plasma membrane while the novel PKCδ was recruited to the membrane of the endoplasmic reticulum (ER). We demonstrate that the PKCδ translocation was driven by a novel Gαs-cyclic AMP-EPAC-RAP-PLCε pathway resulting in specific diacylglycerol production at the membrane of the ER. Membrane-specific phosphorylation sensors revealed that directed translocation resulted in phosphorylation activity confined to the target membrane. Specific stimulation of PKCδ caused phosphorylation of the inositol-1,4,5-trisphosphate receptor and dampening of global Ca2+ signaling revealed by graded flash photolysis of caged inositol-1,4,5-trisphosphate. Our data demonstrate a novel signaling pathway enabling differential decoding of incoming stimuli into PKC isoform-specific membrane targeting, significantly enhancing the versatility of cyclic AMP signaling, thus demonstrating the possible interconnection between the PKA and PKC pathways traditionally treated independently. We thus provide novel and elementary understanding and insights into intracellular signaling events.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/MCB.00040-14.

ACKNOWLEDGMENTS

X.H., L.K., and P.L. acknowledge financial support by the DFG (LI 753/6-1 & SFB1027, TPA5 to P.L.) and funding by the HOMFOR program of the Medical faculty and science start-up programs of the Saarland University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.