35
Views
42
CrossRef citations to date
0
Altmetric
Article

Mechanisms of Recombination between Diverged Sequences in Wild-Type and BLM-Deficient Mouse and Human Cells

&
Pages 1887-1897 | Received 03 Dec 2009, Accepted 29 Jan 2010, Published online: 20 Mar 2023
 

Abstract

Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ≤100 bp, even in Msh2/ cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.

Supplemental material for this article may be found at http://mcb.asm.org/.

This work was supported by grants R01GM54668 from the NIH and NSF0346354 from the National Science Foundation to M.J. J.R.L. was supported by NRSA Postdoctoral Fellowship F32GM084637 from the NIH.

We are grateful to the Jasin lab for helpful commentary regarding experimental design and analysis and to Kyoji Horie and Kosuke Yusa for providing the Blmtet/tet ES cells and Nathan Ellis and Karen Ouyang for providing human fibroblast cell lines.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.