8
Views
83
CrossRef citations to date
0
Altmetric
Research Article

A Mutation in the Gene Encoding the Saccharomyces cerevisiae Single-Stranded DNA-Binding Protein Rfa1 Stimulates a RAD52-Independent Pathway for Direct-Repeat Recombination

&
Pages 1632-1641 | Received 12 Sep 1994, Accepted 14 Dec 1994, Published online: 30 Mar 2023
 

Abstract

In the yeast Saccharomyces cerevisiae, recombination between direct repeats is synergistically reduced in rad1 rad52 double mutants, suggesting that the two genes define alternate recombination pathways. Using a classical genetic approach, we searched for suppressors of the recombination defect in the double mutant. One mutation that restores wild-type levels of recombination was isolated. Cloning by complementation and subsequent physical and genetic analysis revealed that it maps to RAF1. This locus encodes the large subunit of the single-stranded DNA-binding protein complex, RP-A, which is conserved from S. cerevisiae to humans. The rfa1 mutation on its own causes a 15-fold increase in direct-repeat recombination. However, unlike most other hyperrecombination mutations, the elevated levels in rfa1 mutants occur independently of RAD52 function. Additionally, rfa1 mutant strains grow slowly, are UV sensitive, and exhibit decreased levels of heteroallelic recombination. DNA sequence analysis of rfa1 revealed a missense mutation that alters a conserved residue of the protein (aspartic acid 228 to tyrosine [D228Y]). Biochemical analysis suggests that this defect results in decreased levels of RP-A in mutant strains. Overexpression of the mutant subunit completely suppresses the UV sensitivity and partially suppresses the recombination phenotype. We propose that the defective complex fails to interact properly with components of the repair, replication, and recombination machinery. Further, this may permit the bypass of the recombination defect of rad1 rad52 mutants by activating an alternative single-stranded DNA degradation pathway.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.