8
Views
83
CrossRef citations to date
0
Altmetric
Research Article

A Mutation in the Gene Encoding the Saccharomyces cerevisiae Single-Stranded DNA-Binding Protein Rfa1 Stimulates a RAD52-Independent Pathway for Direct-Repeat Recombination

&
Pages 1632-1641 | Received 12 Sep 1994, Accepted 14 Dec 1994, Published online: 30 Mar 2023

REFERENCES

  • Aboussekhra, A., R. Chanet, Z. Zgaga, C. Cassier-Chauvat, M. Heude, and F. Fabre. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Nucleic Acids Res. 17:7211–7219.
  • Adachi, Y., and U. K. Laemmli. 1992. Identification of nuclear pre-replication centers poised for DNA synthesis in Xenopus egg extracts: immunolo-calization study of replication protein A. J. Cell Biol. 119:1–15.
  • Aguilera, A., and H. L. Klein. 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic charac-terization of hyper-recombination mutations. Genetics 119:779–790.
  • Alonso, J. C., G. Luder, and R. H. Tailor. 1991. Characterization of Bacillus subtilis recombinational pathways. J. Bacteriol. 173:3977–3980.
  • Bailly, V., C. H. Sommers, P. Sung, L. Prakash, and S. Prakash. 1992. Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc. Natl. Acad. Sci. USA 89:8273–8277.
  • Balbinder, E. 1993. Multiple pathways of deletion formation in Escherichia coli. Mutat. Res. 299:193–209.
  • Barbour, S. D., H. Nagaishi, A. Templin, and A. J. Clark. 1970. Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec1 revertants caused by indirect suppression of rec2 mutations. Proc. Natl. Acad. Sci. USA 67:128–135.
  • Bardwell, L., A. J. Cooper, and E. C. Friedberg. 1992. Stable and specific association between the yeast recombination and DNA repair proteins Rad1 and Rad10 in vitro. Mol. Cell. Biol. 12:3041–3049.
  • Brill, S. J., and B. Stillman. 1989. Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature (London) 342: 92–95.
  • Brill, S. J., and B. Stillman. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5:1589–1600.
  • Brown, G. W., J. C. Hines, P. Fisher, and D. S. Ray. 1994. Isolation of the genes encoding the 51-kilodalton and 28-kilodalton subunits of Crithidia fasciculata replication protein A. Mol. Biochem. Parasitol. 59:135–142.
  • Clark, A. J. 1971. Toward a metabolic interpretation of genetic recombination of Escherichia coli and its phages. Annu. Rev. Microbiol. 25:438–464.
  • Clark, A. J., and A. Margulies. 1965. Isolation and characterization of recombination-deficient mutants in Escherichia coli K12. Proc. Natl. Acad. Sci. USA 53:451–459.
  • Coverley, D., M. K. Kenny, D. P. Lane, and R. D. Wood. 1992. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res. 20:3873–3880.
  • Coverley, D., M. K. Kenny, M. Munn, W. D. Rupp, D. P. Lane, and R. D. Wood. 1991. Requirement for the replication protein SSB in human DNA excision repair. Nature (London) 349:538–541.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Erdile, L. F., W. D. Heyer, R. Kolodner, and T. J. Kelly. 1991. Characterization of a cDNA encoding the 70-kDa single-stranded DNA-binding subunit of human replication protein A and the role of the protein in DNA replication. J. Biol. Chem. 266:12090–12098.
  • Erdile, L. F., M. S. Wold, and T. J. Kelly. 1990. The primary structure of the 32-kDa subunit of human replication protein A. J. Biol. Chem. 265:3177–3182.
  • Fairman, M. P., and B. Stillman. 1988. Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J. 7:1211–1218.
  • Firmenich, A. A., M. Elias-Arnanz, and P. Berg. 1995. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol. Cell. Biol. 15:1620–1631.
  • Fishman-Lobell, J., and J. E. Haber. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Fishman-Lobell, J., N. Rudin, and J. E. Haber. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292–1303.
  • Game, J. C., and B. S. Cox. 1971. Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature. Mutat. Res. 6:37–55.
  • Gietz, D., A. St Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Gillen, J. R., D. K. Willis, and A. J. Clark. 1981. Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J. Bacteriol. 145:521–532.
  • Haber, J. E. 1992. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol. 4:401–412.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hartwell, L., and D. Smith. 1985. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–395.
  • Heyer, W. D., and R. D. Kolodner. 1989. Purification and characterization of a protein from Saccharomyces cerevisiae that binds tightly to single-stranded DNA and stimulates a cognate strand exchange protein. Biochemistry 28: 2856–2862.
  • Heyer, W. D., M. R. Rao, L. F. Erdile, T. J. Kelly, and R. D. Kolodner. 1990. An essential Saccharomyces cerevisiae single-stranded DNA binding protein is homologous to the large subunit of human RP-A. EMBO J. 9:2321–2329.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Hoekstra, M. F., T. Naughton, and R. E. Malone. 1986. Properties of spontaneous mitotic recombination occurring in the presence of the rad52-1 mutation of Saccharomyces cerevisiae. Genet. Res. 48:9–17.
  • Hoffman, C. S., and F. Winston. 1987. A ten-minute DNA preparation efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272.
  • Horii, Z. I., and A. J. Clark. 1973. Genetic analysis of the Rec F pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J. Mol. Biol. 80:327–344.
  • Jackson, J. A., and G. R. Fink. 1981. Gene conversion between duplicated genetic elements in yeast. Nature (London) 292:306–311.
  • Kaback, D. B. Personal communication.
  • Kenny, M. K., S. H. Lee, and J. Hurwitz. 1989. Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc. Natl. Acad. Sci. USA 86:9757–9761.
  • Klein, H. L. 1988. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 120:367–377.
  • Kunz, B. A., L. Kohalmi, X. Kang, and K. A. Magnusson. 1990. Specificity of the mutator effect caused by disruption of the RAD1 excision repair gene of Saccharomyces cerevisiae. J. Bacteriol. 172:3009–3014.
  • Kunz, B. A., M. G. Peters, S. E. Kohalmi, D. Armstrong, M. Glattke, and K. Badiani. 1989. Disruption of the RAD52 gene alters the spectrum of spontaneous SUP4-o mutations in Saccharomyces cerevisiae. Genetics 122:535–542.
  • Kushner, S. R., H. Nagaishi, A. Templin, and A. J. Clark. 1971. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc. Natl. Acad. Sci. USA 68:824–827.
  • Lavery, P. E., and S. C. Kowalczykowski. 1992. A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. J. Biol. Chem. 267:9315–9320.
  • Lea, D. E., and C. A. Coulson. 1949. The distribution in the numbers of mutants in bacterial populations. J. Genet. 49:264–285.
  • Lindgren, B. W. 1976. Statistical theory, 3rd ed. Macmillan, New York.
  • Low, B. 1968. Formation of meriploids in matings with a class of rec2 recipient strains of Escherichia coli K12. Proc. Natl. Acad. Sci. USA 60:160–167.
  • Low, R. L., J. Shlomai, and A. Kornberg. 1982. Protein n, a primosomal DNA replication protein of Escherichia coli. Purification and characterization. J. Biol. Chem. 257:6242–6250.
  • Lucchini, G., M. Muzi Falconi, A. Pizzagalli, A. Aguilera, H. L. Klein, and P. Plevani. 1990. Nucleotide sequence and characterization of temperature-sensitive polI mutants of Saccharomyces cerevisiae. Gene 90:99–104.
  • Malone, R., and R. E. Esposito. 1980. The rad52 gene is required for ho-mothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. USA 77:503–507.
  • Malone, R. E., B. A. Montelone, C. Edwards, K. Carney, and M. F. Hoekstra. 1988. A reexamination of the role of the RAD52 gene in spontaneous mitotic recombination. Curr. Genet. 14:211–223.
  • McDonald, J. P., and R. Rothstein. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics 137:393–405.
  • Memet, S., W. Saurin, and A. Sentenac. 1988. RNA polymerases B and C are more closely related to each other than to RNA polymerase A. J. Biol. Chem. 263:10048–10051.
  • Meyer, R. R., and P. S. Laine. 1990. The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Rev. 54:342–380.
  • Mitsis, P. G., S. C. Kowalczykowski, and I. R. Lehman. 1993. A single-stranded DNA binding protein from Drosophila melanogaster: characterization of the heterotrimeric protein and its interaction with single-stranded DNA. Biochemistry 32:5257–5266.
  • Montelone, B., S. Prakash, and L. Prakash. 1981. Spontaneous mitotic recombination in mms8-1, an allele of the CDC9 gene of Saccharomyces cerevisiae. J. Bacteriol. 147:517–525.
  • Mortimer, R. K., and C. R. Contopoulou. 1991. Glossary of gene symbols, p. 97. In Yeast Genetic Stock Center catalogue. Division of Genetics, University of California at Berkeley, Berkeley.
  • Orr-Weaver, T., J. W. Szostak, and R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358.
  • Orr-Weaver, T. L., J. W. Szostak, and R. J. Rothstein. 1983. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101:228–245.
  • Ozenberger, B. A., and G. S. Roeder. 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222–1231.
  • Petes, T. D., R. E. Malone, and L. S. Symington. 1991. Recombination in yeast, p. 407–521. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics, vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Prakash, S., L. Prakash, W. Burke, and B. Monteleone. 1980. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae. Genetics 94:31–50.
  • Resnick, M. A. 1969. Genetic control of radiation sensitivity in Saccharomy-ces cerevisiae. Genetics 62:519–531.
  • Resnick, M. A., and P. Martin. 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119–129.
  • Reynolds, R. J., J. D. Love, and E. C. Friedberg. 1981. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: excision of dimers in cell extracts. J. Bacteriol. 147:705–708.
  • Ronne, H., and R. Rothstein. 1988. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination. Proc. Natl. Acad. Sci. USA 85:2696–2700.
  • Ronne, H., and R. Rothstein. Unpublished data.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Rothstein, R., C. Helms, and N. Rosenberg. 1987. Concerted deletions and inversions are caused by mitotic recombination between delta sequences in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:1198–1207.
  • Saeki, T., I. Machida, and S. Nakai. 1980. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat. Res. 73:251–265.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sandigursky, M., and W. A. Franklin. 1994. Escherichia coli single-stranded DNA binding protein stimulates the DNA deoxyribophosphodiesterase activity of exonuclease I. Nucleic Acids Res. 22:247–250.
  • Schiestl, R. H., and S. Prakash. 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626.
  • Sherman, F. 1991. Getting started with yeast, p. 3–21. In C. Guthrie, and G. R. Fink (ed.), Guide to yeast genetics and molecular biology, vol. 194. Academic Press, Inc., San Diego, Calif.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Shivji, K. K., M. K. Kenny, and R. D. Wood. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors in yeast host strains designed for efficient manipulation in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, G. R. 1988. Homologous recombination in procaryotes. Microbiol. Rev. 52:1–28.
  • Smith, G. R. 1989. Homologous recombination in E. coli: multiple pathways for multiple reasons. Cell 58:807–809.
  • Steensma, H. Y., J. C. Crowley, and D. B. Kaback. 1987. Molecular cloning of chromosome I DNA from Saccharomyces cerevisiae: isolation and analysis of the CEN1-ADE1-CDC15 region. Mol. Cell. Biol. 7:410–419.
  • Struhl, K., D. T. Stinchcomb, S. Scherer, and R. W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Thomas, B. J., and R. Rothstein. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123: 725–738.
  • Thuriaux, P., and A. Sentenac. 1992. Gene expression, p. 1–48. In E. Jones, J. Pringle, and J. R. Broach (ed.), The molecular biology and cellular biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Tomkinson, A. E., A. J. Bardwell, L. Bardwell, N. J. Tappe, and E. C. Friedberg. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature (London) 362:860–862.
  • Tsurimoto, T., and B. Stillman. 1989. Multiple replication factors augment DNA synthesis by the two eukaryotic DNA polymerases α and d. EMBO J. 8:3883–3889.
  • Umbricht, C. B., L. F. Erdile, E. W. Jabs, and T. J. Kelly. 1993. Cloning, overexpression, and genomic mapping of the 14-kDa subunit of human replication protein A. J. Biol. Chem. 268:6131–6138.
  • Waldman, B. C., and A. S. Waldman. 1990. Illegitimate and homologous recombination in mammalian cells: differential sensitivity to an inhibitor of poly(ADP-ribosylation). Nucleic Acids Res. 18:5981–5988.
  • Willetts, N. S., A. J. Clark, and B. Low. 1969. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bacte-riol. 97:244–249.
  • Willetts, N. S., and D. W. Mount. 1969. Genetic analysis of recombination-deficient mutants of Escherichia coli K-12 carrying rec mutations cotransducible with thyA. J. Bacteriol. 100:923–934.
  • Wold, M. S., and T. Kelly. 1988. Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc. Natl. Acad. Sci. USA 85:2523–2527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.