10
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Activation Mechanism of the Multifunctional Transcription Factor Repressor-Activator Protein 1 (Rap1p)

, , &
Pages 3187-3196 | Received 11 Dec 1995, Accepted 08 Mar 1996, Published online: 29 Mar 2023
 

Abstract

Transcriptional activation in eukaryotic organisms normally requires combinatorial interactions of multiple transcription factors. In most cases, the precise role played by each transcription factor is not known. The upstream activating sequence (UAS) elements of glycolytic enzyme genes in Saccharomyces cerevisiae are excellent model systems for the study of combinatorial interactions. The yeast protein known as Rap1p acts as both a transcriptional repressor and an activator, depending on sequence context. Rap1p-binding sites are found adjacent to Gcr1p-binding sites in the UAS elements of glycolytic enzyme genes. These UAS elements constitute some of the strongest activating sequences known in S. cerevisiae. In this study, we have investigated the relationship between Rap1p- and Gcr1p-binding sites and the proteins that bind them. In vivo DNA-binding studies with rap1ts mutant strains demonstrated that the inability of Rap1p to bind at its site resulted in the inability of Gcr1p to bind at adjacent binding sites. Synthetic oligonucleotides, modeled on the UAS element of PYK1, in which the relative positions of the Rap1p- and Gcr1p-binding sites were varied were prepared and tested for their ability to function as UAS elements. The ability of the oligonucleotides to function as UAS elements was dependent not only on the presence of both binding sites but also on the relative distance between the binding sites. In vivo DNA-binding studies showed that the ability of Rap1p to bind its site was independent of Gcr1p but that the ability of Gcr1p to bind its site was dependent on the presence of an appropriately spaced and bound Rap1p-binding site. In vitro binding studies showed Rap1p-enhanced binding of Gcr1p on oligonucleotides modeled after the native PYK1 UAS element but not when the Rap1p- and Gcr1p-binding sites were displaced by 5 nucleotides. This work demonstrates that the role of Rap1p in the activation of glycolytic enzyme genes is to bind in their UAS elements and to facilitate the binding of Gcr1p at adjacent binding sites.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.