10
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Activation Mechanism of the Multifunctional Transcription Factor Repressor-Activator Protein 1 (Rap1p)

, , &
Pages 3187-3196 | Received 11 Dec 1995, Accepted 08 Mar 1996, Published online: 29 Mar 2023

REFERENCES

  • Baker, H. V. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutations, and evidence for expression. Mol. Cell. Biol. 6:3774–3784.
  • Baker, H. V. 1991. GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in the CTTCC sequence motif. Proc. Natl. Acad. Sci. USA 88:9443–9447.
  • Bernardi, F., M. Zatchej, and F. Thoma. 1992. Species specific protein-DNA interactions may determine the chromatin units of genes in S. cerevisiae and in S. pombe. EMBO J. 11:1177–1185.
  • Bitter, G. A., K. K. H. Chang, and K. M. Egan. 1991. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceralde-hyde-3-phosphate dehydrogenase gene promoter. Mol. Gen. Genet. 231:22–32.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Brandl, C. J., and K. Struhl. 1990. A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol. Cell. Biol. 10:4256–4265.
  • Brindle, P. K., J. P. Holland, C. E. Willett, M. A. Innis, and M. J. Holland. 1990. Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABF1 protein, like repressor-activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Mol. Cell. Biol. 10:4872–4895.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Buchman, A. R., and R. D. Kornberg. 1990. A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors. Mol. Cell. Biol. 10:887–897.
  • Buchman, A. R., N. F. Lue, and R. D. Kornberg. 1988. Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNA-binding protein. Mol. Cell. Biol. 8:5086–5099.
  • Burke, R. L., P. Tekamp-Olson, and R. Najarian. 1983. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J. Biol. Chem. 258:2193–2201.
  • Butler, G., I. W. Dawes, and D. J. McConnell. 1990. TUF factor binds to the upstream region of the pyruvate decarboxylase structural gene (PDC1) of Saccharomyces cerevisiae. Mol. Gen. Genet. 223:449–456.
  • Capieaux, E., M.-L. Vignais, A. Sentenac, and A. Goffeau. 1989. The yeast H+-ATPase gene is controlled by the promoter binding factor TUF. J. Biol. Chem. 264:7437–7446.
  • Carmen, A. A., and M. J. Holland. 1994. The upstream repression sequence from the yeast enolase gene ENO1 is a complex regulatory element that binds multiple trans-acting factors including REB1. J. Biol. Chem. 269:9790–9797.
  • Chambers, A., C. Stanway, A. J. Kingsman, and S. M. Kingsman. 1988. The UAS of the yeast PGK gene is composed of multiple functional elements. Nucleic Acids Res. 16:8245–8260.
  • Chambers, A., C. Stanway, J. S. H. Tsang, Y. Henry, A. J. Kingsman, and S. M. Kingsman. 1990. ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK. Nucleic Acids Res. 18:5393–5399.
  • Chambers, A., J. S. H. Tsang, C. Stanway, A. J. Kingsman, and S. M. Kingsman. 1989. Transcriptional control of the Saccharomyces cerevisiae PGK gene by RAP1. Mol. Cell. Biol. 9:5516–5524.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chromatin structure of UASg and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Ciriacy, M., K. Freidel, and C. Lohning. 1991. Characterization of transacting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr. Genet. 20:441–448.
  • Clifton, D., and D. G. Fraenkel. 1981. The gcr1 (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem. 256:13074–13078.
  • Clifton, D., S. B. Weinstock, and D. G. Fraenkel. 1978. Glycolysis mutants of Saccharomyces cerevisiae. Genetics 88:1–11.
  • Conrad, M. N., J. H. Wright, A. J. Wolf, and V. A. Zakian. 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63:739–750.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and K. T. Arndt. 1991. RAP1 is required for BAS1/BAS2- and GCR4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Fraenkel, D. G. 1982. Carbohydrate metabolism, p. 1–37. In J. N. Strathern, E. W. Jones, and J. R. Borach (ed.), The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Fried, M., and D. M. Crothers. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9:6505–6525.
  • Garner, M. M., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: applications to components of Escherichia coli lactose operon regulatory systems. Nucleic Acids Res. 9:3037–3060.
  • Goncalves, P. M., G. Griffioen, R. Minnee, M. Bosma, L. S. Kraakman, W. H. Mager, and R. J. Planta. 1995. Transcriptional activation of yeast ribosomal protein genes requires additional elements apart from binding sites for Abf1p or Rap1p. Nucleic Acids Res. 23:1475–1480.
  • Henry, Y. A. L., M. C. Lopez, J. M. Gibbs, A. Chambers, S. M. Kingsman, H. V. Baker, and C. A. Stanway. 1994. The yeast protein Gcr1p binds to the PGK UAS and contributes to the activation of transcription of the PGK gene. Mol. Gen. Genet. 245:506–511.
  • Hess, B., A. Boiteux, and J. Kruger. 1969. Cooperation of glycolytic enzymes. Adv. Enzyme Regul. 7:149–169.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and M. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Holland, M. J., and J. P. Holland. 1978. Isolation and identification of yeast messenger ribonucleic acids coding for enolase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. Biochemistry 17:4900–4907.
  • Holland, M. J., T. Yokoi, J. P. Holland, K. Myambo, and M. A. Innis. 1987. The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde-3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Mol. Cell. Biol. 7:813–820.
  • Huie, M. A., and H. V. Baker. DNA-binding properties of the yeast transcriptional activator, Gcr1p. Yeast, in press.
  • Huie, M. A., E. W. Scott, C. M. Drazinic, M. C. Lopez, I. K. Hornstra, T. P. Yang, and H. V. Baker. 1992. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2690–2700.
  • Ito, H., K. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kawasaki, G., and D. G. Fraenkel. 1982. Cloning of yeast glycolysis genes by complementation. Biochem. Biophys. Res. Commun. 108:1107–1112.
  • Kurtz, S., and D. Shore. 1991. RAP1 protein activates and silences transcription of mating-type genes in yeast. Genes Dev. 5:616–628.
  • López, M. C., J. B. Smerage, and H. V. Baker. 1993. A simplified vacuum blotting method for genomic sequencing and in vivo footprinting. BioTechniques 15:362–363.
  • Lustig, A. J., S. Kurtz, and D. Shore. 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553.
  • Machida, M., Y. Jigami, and H. Tanaka. 1989. Purification and characterization of a nuclear factor which binds specifically to the upstream activation sequence of Saccharomyces cerevisiae enolase 1 gene. Eur. J. Biochem. 184:305–311.
  • McNeil, J. B., P. Dykshoorn, J. N. Huy, and S. Small. 1990. The DNA-binding protein RAP1 is required for efficient transcriptional activation of the yeast PYK glycolytic gene. Curr. Genet. 18:405–412.
  • Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Nishizawa, M., R. Araki, and Y. Teranishi. 1989. Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 9:442–451.
  • Ogden, J. E., C. A. Stanway, S. Kim, J. Mellor, A. J. Kingsman, and S. M. Kingsman. 1986. Efficient expression of the Saccharomyces cerevisiae PGK gene depends upon an upstream activation sequence but does not require a TATA sequence. Mol. Cell. Biol. 6:4335–4343.
  • Remacle, J. E., and S. Holmberg. 1992. A REB1-binding site is required for GCN4-independent ILV1 basal-level transcription and can be functionally replaced by an ABF1-binding site. Mol. Cell. Biol. 12:5516–5526.
  • Rodicio, R., J. J. Heinisch, and C. P. Hollenberg. 1993. Transcriptional control of yeast phosphoglycerate mutase-encoding gene. Gene 125:125–133.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Santangelo, G. M., and J. Tornow. 1990. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites. Mol. Cell. Biol. 10:859–862.
  • Scott, E. W., H. E. Allison, and H. V. Baker. 1990. Characterization of TPI gene expression in isogeneic wild-type and gcr1 -deletion mutant strains of Saccharomyces cerevisiae. Nucleic Acids Res. 18:7099–7107.
  • Scott, E. W., and H. V. Baker. 1993. Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Mol. Cell. Biol. 13:543–550.
  • Shore, D., and K. Nasmyth. 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencers and activator elements. Cell 51:721–732.
  • Stanway, C. A., A. Chambers, A. J. Kingsman, and S. M. Kingsman. 1989. Characterization of the transcriptional potency of sub-elements of the UAS ofthe yeast PGK gene in a PGK mini-promoter. NucleicAcids Res. 17:9205–9218.
  • Stanway, C. A., J. M. Gibbs, S. E. Kearsey, M. C. López, and H. V. Baker. 1994. The yeast co-activator GAL11 positively influences transcription of the phosphoglycerate kinase gene, but only when RAP1 is bound to its upstream activation sequence. Mol. Gen. Genet. 243:207–214.
  • Tornow, J., X. Zeng, W. Gao, and G. M. Santangelo. 1993. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12:2431–2437.
  • Uemura, H., and Y. Jigami. 1992. Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol. Cell. Biol. 12:3834–3842.
  • Uemura, H., and Y. Jigami. 1995. Mutations in GCR1, a transcriptional activator of Saccharomyces cerevisiae glycolytic genes, function as suppressors of gcr2 mutations. Genetics 139:511–521.
  • Willett, C. E., C. M. Gelfman, and M. J. Holland. 1993. A complex regulatory element from the yeast ENO2 gene modulates GCR1-dependent transcriptional activation. Mol. Cell. Biol. 13:2623–2633.
  • Woudt, L. P., A. B. Smit, W. H. Mager, and R. J. Planta. 1986. Conserved sequence elements upstream of the gene encoding yeast ribosomal protein L25 are involved in transcription activation. EMBO J. 5:1037–1040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.