7
Views
1
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Sequence-Directed Base Mispairing in Human Oncogenes

&
Pages 4659-4669 | Received 13 Mar 1998, Accepted 05 May 1998, Published online: 27 Mar 2023
 

ABSTRACT

The most frequently observed mutations in ras oncogenes in solid human tumors are GC→AT transitions at the 3′ G residue of the GG doublet in codon 12 of these oncogenes. We had shown previously that mutagenesis by thymidine occurred with the same sequence specificity in mammalian cells, in that mutagenesis occurred preferentially at the 3′ G of GG doublets. In this study, in vitro DNA synthesis experiments were carried out to assess the effect of local DNA sequence on base mispairing in order to determine the mechanism of sequence-directed mutagenesis by thymidine and its possible relationship to activating point mutations in N-, Ki- and Ha-ras oncogenes in solid human tumors. To avoid complicating the interpretation of the results because of the occurrence of mismatch repair as well as base misincorporation, the experiments were carried out in a repair-free environment with exonuclease-free Klenow polymerase. The results of these experiments showed that misincorporation of deoxyribosylthymine (dT) occurred with several-fold-greater efficiency opposite the 3′ G compared to the 5′ G of the GG doublet in codon 12 of human ras oncogenes. These results further demonstrated that the relative difference in the extent of dT misincorporation opposite the 3′ G and the 5′ G of GG doublets in codon 12 in the various ras oncogenes was affected by the base immediately upstream of the doublet. Within the GG doublet, it was seen that the 5′ G and 3′ G residues had an effect on the extent of dT misincorporation opposite each other. The 5′ G was shown to have a stimulatory effect on dT misincorporation opposite the 3′ G, while the 3′ G was shown to have an inhibitory effect on dT misincorporation opposite the 5′ G. Presumably, these mutual interactions within GG doublets are additive, such that the large differential in dT misincorporation observed between the 3′ G and 5′ G residues in GG doublets is the end result of the combined stimulatory and inhibitory effects within these doublets. Since the observed pattern of dT misincorporation within GG doublets corresponds to the most frequent mode of activation of ras oncogenes in solid human tumors, the results of these experiments suggest that sequence-directed dT misincorporation may be involved in the pattern of activation of humanras oncogenes, by causing GC→AT transitions preferentially at the 3′ G of the GG doublet in codon 12 of these oncogenes.

ACKNOWLEDGMENTS

This work was supported by Public Health Service grant CA 31781 from the National Cancer Institute, by Army grant DAMD 17-94-J-4446, and by a grant from the Colonel William A. Wester Memorial Fund.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.