14
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Specific Binding of High-Mobility-Group I (HMGI) Protein and Histone H1 to the Upstream AT-Rich Region of the Murine Beta Interferon Promoter: HMGI Protein Acts as a Potential Antirepressor of the Promoter

, &
Pages 2803-2816 | Received 25 Jun 1998, Accepted 11 Jan 1999, Published online: 28 Mar 2023
 

Abstract

The high-mobility-group I (HMGI) protein is a nonhistone component of active chromatin. In this work, we demonstrate that HMGI protein specifically binds to the AT-rich region of the murine beta interferon (IFN-β) promoter localized upstream of the murine virus-responsive element (VRE). Contrary to what has been described for the human promoter, HMGI protein did not specifically bind to the VRE of the murine IFN-β promoter. Stably transfected promoters carrying mutations on this HMGI binding site displayed delayed virus-induced kinetics of transcription. When integrated into chromatin, the mutated promoter remained repressed and never reached normal transcriptional activity. Such a phenomenon was not observed with transiently transfected promoters upon which chromatin was only partially reconstituted. Using UV footprinting, we show that the upstream AT-rich sequences of the murine IFN-β promoter constitute a preferential binding region for histone H1. Transfection with a plasmid carrying scaffold attachment regions as well as incubation with distamycin led to the derepression of the IFN-β promoter stably integrated into chromatin. In vitro, HMGI protein was able to displace histone H1 from the upstream AT-rich region of the wild-type promoter but not from the promoter carrying mutations on the upstream high-affinity HMGI binding site. Our results suggest that the binding of histone H1 to the upstream AT-rich region of the promoter might be partly responsible for the constitutive repression of the promoter. The displacement by HMGI protein of histone H1 could help to convert the IFN-β promoter from a repressed to an active state.

ACKNOWLEDGMENTS

We are grateful to Emmanuel Käs for the gift of plasmid pET3b-HMGI and fruitful discussions as well as to Ariel Prunel for the gift of purified histone H1. We thank Pascale Debey for critical reading of the manuscript, S. Chusterman and S. Navarro for discussions and encouragement, and Eugenio Prieto for photographic work.

This work was supported by the Centre de la Recherche Scientifique and by grants from the Association pour la Recherche sur le Cancer (contract 1042) and the Federation Nationale des Groupements des Entreprises Francçaises et Monégasques dans la Lutte contre le Cancer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.