14
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Specific Binding of High-Mobility-Group I (HMGI) Protein and Histone H1 to the Upstream AT-Rich Region of the Murine Beta Interferon Promoter: HMGI Protein Acts as a Potential Antirepressor of the Promoter

, &
Pages 2803-2816 | Received 25 Jun 1998, Accepted 11 Jan 1999, Published online: 28 Mar 2023

REFERENCES

  • Andersson, S., D. L. Davis, H. Dahlbäck, H. Jörnvall, and J. Russell 1989. Cloning, structure and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol. Chem. 264:8222–8229.
  • Bagga, R., and J. Emerson 1997. An HMGI/Y-containing repressor complex and supercoiled DNA topology are critical for long-range enhancer-dependent transcription in vitro. Genes Dev. 11:629–639.
  • Becker, M. M., and J. Wang 1984. Use of light for footprinting DNA in vivo. Nature 309:682–687.
  • Bonnefoy, E., and J. Rouvière-Yaniv 1992. HU, the major histone-like protein of E. coli, modulates the binding of IHF to oriC. EMBO J. 11:4489–4496.
  • Bonnefoy, E., M. Takahashi, and J. Rouvière-Yaniv 1994. DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J. Mol. Biol. 242:116–129.
  • Bouvet, P., S. Dimitrov, and J. Wolffe 1994. Specific regulation of Xenopus chromosomal 5S RNA gene transcription in vivo by histone H1. Genes Dev. 8:1147–1159.
  • Bustin, M., and J. Reeves 1996. High-mobility-group proteins: architectural components that facilitate chromatin function. Prog. Nucleic Acids Res. 54:35–100.
  • Cirillo, L. A., C. E. McPherson, P. Bossard, K. Stevens, S. Cherian, E. Y. Shim, K. L. Clark, S. K. Burley, and J. Zaret 1998. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17:244–254.
  • Civas, A., M. Dion, G. Vodjdani, and J. Doly 1991. Repression of the murine interferon alpha 11 gene: identification of negatively acting sequences. Nucleic Acids Res. 19:4497–4502.
  • Ding, H.-F., M. Bustin, and J. Hansen 1997. Alleviation of histone H1-mediated transcriptional repression and chromatin compaction by the acidic activation region in chromosomal protein HMG-14. Mol. Cell. Biol. 17:5843–5853.
  • Frebourg, T., and J. Brison 1988. Plasmid vectors with multiple cloning sites and cat-reporter gene for promoter cloning and analysis in animal cells. Gene 65:315–318.
  • Hartzog, G. A., and J. Winston 1997. Nucleosomes and transcription: recent lessons from genetics. Curr. Opin. Genet. Dev. 7:192–198.
  • Hill, D. A., and J. Reeves 1997. Competition between HMG-I(Y), HMG-1 and histone H1 on four-way junction DNA. Nucleic Acids Res. 25:3523–3531.
  • Holth, L. T., A. E. Thorlacius, and J. Reeves 1997. Effects of epidermial growth factor and estrogen on the regulation of the HMG-I/Y gene in human mammary epithelial cell lines. DNA Cell Biol. 16:1299–1309.
  • Ivanchenko, M., J. Zlanatova, and J. van Holde 1997. Histone H1 preferentially binds to superhelical DNA molecules of higher compaction. Biophys. J. 72:1388–1395.
  • Kandolf, H. 1994. The H1A histone variant is an in vivo repressor of oocyte-type 5S gene transcription in Xenopus laevis embryos. Proc. Natl. Acad. Sci. USA 91:7257–7261.
  • Käs, E., E. Izaurralde, and J. Laemmli 1989. Specific inhibition of DNA binding to nuclear scaffolds and H1 by distamycin. The role of oligo (dA) · (dT) tracts. J. Mol. Biol. 210:587–599.
  • Kermechiev, M., J. L. Workman, and J. Pikaard 1997. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol. Cell. Biol. 17:5833–5842.
  • Khadake, J. R., and J. Rao 1997. Preferential condensation of SAR-DNA by histone H1 and its SPKK containing octapeptide repeat motif. FEBS Lett. 400:193–196.
  • Kim, T. K., and J. Maniatis 1997. The mechanism of transcriptional synergy of an in vitro assembled interferon-β enhanceosome. Mol. Cell 1:119–129.
  • Lee, H.-Y., and J. Archer 1994. Nucleosome-mediated disruption of transcription factor-chromatin initiation complex at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14:32–41.
  • Lee, H.-Y., and J. Archer 1998. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J. 17:1454–1466.
  • Li, Q., O. Wrange, and J. Eriksson 1997. The role of chromatin in transcriptional regulation. Int. J. Biochem. Cell. Biol. 29:731–742.
  • Lin, R., C. Heylbroeck, P. M. Pitha, and J. Hiscott 1998. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18:2986–2996.
  • Lopez, S., R. Reeves, M.-L. Island, M.-T. Bandu, N. Christeff, J. Doly, and J. Navarro 1997. Silencer activity in the interferon-A gene promoters. J. Biol. Chem. 272:22788–22799.
  • Luckow, B., and J. Schütz 1987. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory element. Nucleic Acids Res. 15:5490–5494.
  • Maher, J. F., and J. Nathans 1996. Multivalent DNA-binding properties of the HMGI proteins. Proc. Natl. Acad. Sci. USA 93:6716–6720.
  • McPherson, C. E., R. Horowitz, C. L. Woodcock, C. Jiang, and J. Zaret 1996. Nucleosome positioning properties of the albumin transcriptional enhancer. Nucleic Acids Res. 24:397–404.
  • Merika, M., A. J. Williams, G. Chen, T. Collins, and J. Thanos 1998. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell 1:277–287.
  • Reeves, R., and J. Nissen 1993. Interaction of high mobility group-I(Y) nonhistone proteins with nucleosome core particles. J. Biol. Chem. 268:21137–21146.
  • Robbe, K. Unpublished results.
  • Robbe, K., and J. Bonnefoy 1998. Non-B-DNA structures on the interferon-β promoter? Biochimie 80:665–671.
  • Selleck, S. B., and J. Majors 1987. Photofootprinting in vivo detects transcription-dependent changes in yeast TATA boxes. Nature 325:173–177.
  • Sera, T., and J. Wolffe 1998. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes. Mol. Cell. Biol. 18:3668–3680.
  • Smith, C. L., and J. Hager 1997. Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J. Biol. Chem. 272:27493–27496.
  • Tanaka, N., and J. Taniguchi 1992. Cytokine gene regulation: regulatory cis-elements and DNA binding factors involved in the interferon system. Adv. Immunol. 52:263–281.
  • Thanos, D., and J. Maniatis 1992. The high mobility group protein HMGI(Y) is required for NF-κB-dependent virus induction of the human IFNβ gene. Cell 71:777–789.
  • Thanos, D., W. Du, and J. Maniatis 1993. The high-mobility group protein HMGI(Y) is an essential structural component of the virus-inducible enhancer complex. Cold Spring Harbor Symp. Quant. Biol. 58:73–81.
  • Thanos, D., and J. Maniatis 1995. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100.
  • Tomaszewski, R., and J. Jerzmanowski 1997. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. Nucleic Acids Res. 25:458–465.
  • Vermaak, D., O. C. Steinbach, S. Dimitrov, R. A. W. Rupp, and J. Wolffe 1998. The globular domain of histone H1 is sufficient to direct specific gene repression in early Xenopus embryos. Curr. Biol. 8:533–536.
  • Vodjdani, G., C. Coulombel, and J. Doly 1988. Structure and characterization of a murine chromosomal fragment containing the interferon β gene. J. Mol. Biol. 204:221–231.
  • Whittemore, L. A., and J. Maniatis 1990. Postinduction repression of the β-interferon gene is mediated through two positive regulatory domains. Proc. Natl. Acad. Sci. USA 87:7799–7803.
  • Wolffe, A. P. 1997. Histones, nucleosomes and the roles of chromatin structure in transcriptional control. Biochem. Soc. Trans. 25:354–358.
  • Wolffe, A. P. 1997. Histone H1. Int. J. Biochem. Cell. Biol. 29:1463–1466.
  • Wu, C. 1997. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272:28171–28174.
  • Wunderlich, V., and M. Böttger. High-mobility group proteins and cancer—an emerging link. J. Cancer Res. Clin. Oncol. 123:133–140.
  • Yie, J., S. Liang, M. Merika, and J. Thanos 1997. Intra- and intermolecular cooperative binding of high-mobility-group I(Y) to the beta interferon promoter. Mol. Cell. Biol. 17:3649–3662.
  • Yoneyama, M., W. Suhara, Y. Fukuhara, M. Fukuda, E. Nishida, and J. Fujita 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17:1087–1095.
  • Zhao, K., E. Käs, E. Gonzalez, and J. Laemmli 1993. SAR-dependent mobilization of histone H1 by HMG-I(Y) in vitro: HMG-I(Y) is enriched in H1-depleted chromatin. EMBO J. 12:3237–3247.
  • Zinn, K., D. DiMaio, and J. Maniatis 1983. Identification of two distinct regulatory regions adjacent to the human β-interferon gene. Cell 34:865–879.
  • Zinn, K., and J. Maniatis 1986. Detection of factors that interact with the human β-interferon regulatory region in vivo by DNAase I footprinting. Cell 45:611–618.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.