24
Views
185
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Mechanism of Protein Kinase B Activation by Cyclic AMP-Dependent Protein Kinase

, , , &
Pages 4989-5000 | Received 06 Nov 1998, Accepted 25 Mar 1999, Published online: 28 Mar 2023
 

Abstract

Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation.

ACKNOWLEDGMENTS

Our research was supported by the Institut National de la Santé et de la Recherche Médicale, the Association pour la Recherche sur le Cancer, the Université de Nice-Sophia Antipolis, la Ligue contre le Cancer, Groupe LIPHA-Merck (Lyon, France), and Sankyo (Dusseldörf, Germany, and Tokyo, Japan). C.L.S. is a recipient of a Poste Vert from INSERM.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.