27
Views
57
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Ras Mutant D119N Is Both Dominant Negative and Activated

, , , , &
Pages 6297-6305 | Received 13 Oct 1998, Accepted 17 Jun 1999, Published online: 27 Mar 2023
 

Abstract

The introduction of mutation D119N (or its homolog) in the NKxD nucleotide binding motif of various Ras-like proteins produces constitutively activated or dominant-negative effects, depending on the system and assay. Here we show that Ras(D119N) has an inhibitory effect at a cell-specific concentration in PC12 and NIH 3T3 cells. Biochemical data strongly suggest that the predominant effect of mutation D119N in Ras—a strong decrease in nucleotide affinity—enables this mutant (i) to sequester its guanine nucleotide exchange factor, as well as (ii) to rapidly bind GTP, independent of the regulatory action of the exchange factor. Since mutation D119N does not affect the interaction between Ras and effector molecules, the latter effect causes Ras(D119N) to act as an activated Ras protein at concentrations higher than that of the exchange factor. In comparison, Ras(S17N), which also shows a strongly decreased nucleotide affinity, does not bind to effector molecules. These results point to two important prerequisites of dominant-negative Ras mutants: an increased relative affinity of the mutated Ras for the exchange factor over that for the nucleotide and an inability to interact with the effector or effectors. Remarkably, the introduction of a second, partial-loss-of-function, mutation turns Ras(D119N) into a strong dominant-negative mutant even at high concentrations, as demonstrated by the inhibitory effects of Ras(E37G/D119N) on nerve growth factor-mediated neurite outgrowth in PC12 cells and Ras(T35S/D119N) on fetal calf serum-mediated DNA synthesis in NIH 3T3 cells. Interpretations of these results are discussed.

ACKNOWLEDGMENTS

We gratefully thank Christiane Theiß for excellent technical assistance, Margret Schulte Spechtel for help in protein preparations, Brigitte Oeke for help in microinjection experiments, Iris Simon for the fluorescently labeled xanthosine nucleotides, and our colleagues Nina van den Berghe and Christoph Block for fruitful discussion. R.H.C. was supported by the Biotec programs Bio2-CT93-0005 and Bio4-CT96-1110 of the European Community.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.