63
Views
74
CrossRef citations to date
0
Altmetric
Gene Expression

The Poly(A)-Binding Protein and an mRNA Stability Protein Jointly Regulate an Endoribonuclease Activity

&
Pages 6334-6341 | Received 13 Apr 2000, Accepted 13 Jun 2000, Published online: 28 Mar 2023
 

Abstract

We previously identified a sequence-specific erythroid cell-enriched endoribonuclease (ErEN) activity involved in the turnover of the stable α-globin mRNA. We now demonstrate that ErEN activity is regulated by the poly(A) tail. The unadenylated α-globin 3′ untranslated region (3′UTR) was an efficient substrate for ErEN cleavage, while the polyadenylated 3′UTR was inefficiently cleaved in an in vitro decay assay. The influence of the poly(A) tail was mediated through the poly(A)-binding protein (PABP) bound to the poly(A) tail, which can inhibit ErEN activity. ErEN cleavage of an adenylated α-globin 3′UTR was accentuated upon depletion of PABP from the cytosolic extract, while addition of recombinant PABP reestablished the inhibition of endoribonuclease cleavage. PABP inhibited ErEN activity indirectly through an interaction with the αCP mRNA stability protein. Sequestration of αCP resulted in an increase of ErEN cleavage activity, regardless of the polyadenylation state of the RNA. Using electrophoretic mobility shift assays, PABP was shown to enhance the binding efficiency of αCP to the α-globin 3′UTR, which in turn protected the ErEN target sequence. Conversely, the binding of PABP to the poly(A) tail was also augmented by αCP, implying that a stable higher-order structural network is involved in stabilization of the α-globin mRNA. Upon deadenylation, the interaction of PABP with αCP would be disrupted, rendering the α-globin 3′UTR more susceptible to endoribonuclease cleavage. The data demonstrated a specific role for PABP in protecting the body of an mRNA in addition to demonstrating PABP's well-characterized effect of stabilizing the poly(A) tail.

ACKNOWLEDGMENTS

We thank N. D. Rodgers and P. Trifillis for helpful discussions and critical reading of the manuscript and N. Shanmugam for providing the hnRNP U RNA-binding domain protein.

This work was supported by funds from the National Institutes of Health (grant DK51611) to M.K.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.