56
Views
267
CrossRef citations to date
0
Altmetric
Gene Expression

Yeast Exosome Mutants Accumulate 3′-Extended Polyadenylated Forms of U4 Small Nuclear RNA and Small Nucleolar RNAs

, &
Pages 441-452 | Received 16 Aug 1999, Accepted 08 Oct 1999, Published online: 28 Mar 2023
 

Abstract

The exosome is a protein complex consisting of a variety of 3′-to-5′ exonucleases that functions both in 3′-to-5′ trimming of rRNA precursors and in 3′-to-5′ degradation of mRNA. To determine additional exosome functions, we examined the processing of a variety of RNAs, including tRNAs, small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), RNase P, RNase MRP, and SRP RNAs, and 5S rRNAs in mutants defective in either the core components of the exosome or in other proteins required for exosome function. These experiments led to three important conclusions. First, exosome mutants accumulate 3′-extended forms of the U4 snRNA and a wide variety of snoRNAs, including snoRNAs that are independently transcribed or intron derived. This finding suggests that the exosome functions in the 3′ end processing of these species. Second, in exosome mutants, transcripts for U4 snRNA and independently transcribed snoRNAs accumulate as 3′-extended polyadenylated species, suggesting that the exosome is required to process these 3′-extended transcripts. Third, processing of 5.8S rRNA, snRNA, and snoRNA by the exosome is affected by mutations of the nuclear proteins Rrp6p and Mtr4p, whereas mRNA degradation by the exosome required Ski2p and was not affected by mutations in RRP6 or MTR4. This finding suggests that the cytoplasmic and nuclear forms of the exosome represent two functionally different complexes involved in distinct 3′-to-5′ processing and degradation reactions.

ACKNOWLEDGMENTS

We thank Alan M. Tartakoff for helpful comments on the manuscript, mtr3-1 and mtr4-1 strains, andmtr4 plasmids. We are grateful to members of the Parker laboratory and Harold E. Smith for helpful comments on the manuscript.

This work was supported by the Howard Hughes Medical Institute and NIH grant GM45443 to R.P.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.