13
Views
23
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Feedback Phosphorylation of the Yeast a-Factor Receptor Requires Activation of the Downstream Signaling Pathway from G Protein through Mitogen-Activated Protein Kinase

&
Pages 563-574 | Received 20 May 1999, Accepted 21 Oct 1999, Published online: 28 Mar 2023
 

Abstract

The two yeast pheromone receptors, the a and α-factor receptors, share many functional similarities: both G protein-coupled receptors couple to the same downstream signal transduction pathway, and both receptors undergo feedback regulation involving increased phosphorylation on their C-terminal domains in response to ligand challenge. The present work, which focuses on the signaling mechanism controlling this feedback phosphorylation, indicates one striking difference. While the α-factor-induced phosphorylation of the α-factor receptor does not require activation of the downstream G protein-directed signaling pathway (B. Zanolari, S. Raths, B. Singer-Kruger, and H. Riezman, Cell 71:755–763, 1992), the a-factor-induced phosphorylation of the a-factor receptor (Ste3p) clearly does. Induced Ste3p phosphorylation was blocked in cells with disruptions of various components of the pheromone response pathway, indicating a requirement of pathway components extending from the G protein down through the mitogen-activated protein kinase (MAPK). Furthermore, Ste3p phosphorylation can be induced in the absence of the a-factor ligand when the signaling pathway is artificially activated, indicating that the liganded receptor is not required as a substrate for induced phosphorylation. While the activation of signaling is critical for the feedback phosphorylation of Ste3p, pheromone-induced gene transcription, one of the major outcomes of pheromone signaling, appears not to be required. This conclusion is indicated by three results. First,ste12Δ cells differ from cells with disruptions of the upstream signaling elements (e.g., ste4Δ,ste20Δ, ste5Δ, ste11Δ,ste7Δ, or fus3Δ kss1Δ cells) in that they clearly retain some capacity for inducing Ste3p phosphorylation. Second, while activated alleles of STE11 andSTE12 induce a strong transcriptional response, they fail to induce a-factor receptor phosphorylation. Third, blocking of new pheromone-induced protein synthesis with cycloheximide fails to block phosphorylation. These findings are discussed within the context of a recently proposed model for pheromone signaling (P. M. Pryciak and F. A. Huntress, Genes Dev. 12:2684–2697, 1998): a key step of this model is the activation of the MAPK Fus3p through the Gβγ-dependent relocalization of the Ste5p-MAPK cascade to the plasma membrane. Ste3p phosphorylation may involve activated MAPK Fus3p feeding back upon plasma membrane targets.

ACKNOWLEDGMENTS

We thank Charlie Boone for the collection of STE knockout plasmids, Peter Pryciak for the collection of dominantly activated signaling constructs, and Stan Fields for the ste12 mutants. We also thank Charlie Boone, Linyi Chen, and Amy Roth for helpful comments on the manuscript.

This work was supported by a grant from the National Science Foundation (MCB 95-06839).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.