8
Views
37
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Interactions of the Mcm1 MADS Box Protein with Cofactors That Regulate Mating in Yeast

, , , , &
Pages 4607-4621 | Received 07 Nov 2001, Published online: 27 Mar 2023
 

Abstract

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast. Our results indicate which residues of Mcm1 are essential for viability and transcriptional regulation with its cofactors in vivo. Most of the mutations in Mcm1 that are lethal affect DNA-binding affinity. Interestingly, the lethality of many of these mutations can be suppressed if the MCM1 gene is expressed from a high-copy-number plasmid. Although many of the alanine substitutions affect the ability of Mcm1 to activate transcription alone or in combination with the α1 and Ste12 cofactors, most mutations have little or no effect on Mcm1-mediated repression in combination with the α2 cofactor. Even nonconservative amino acid substitutions of residues in Mcm1 that directly contact α2 do not significantly affect repression. These results suggest that within the same region of the Mcm1 MADS box domain, there are different requirements for interaction with α2 than for interaction with either α1 or Ste12. Our results suggest how a small domain, the MADS box, interacts with multiple cofactors to achieve specificity in transcriptional regulation and how subtle differences in the sequences of different MADS box proteins can influence the interactions with specific cofactors while not affecting the interactions with common cofactors.

We thank Stan Fields and George Sprague for providing strains and plasmids, Jonathan Mathias for constructing pJR018, and Deepu Abraham for pDA105. We thank Evelyne Dubois and Francine Messenguy for communication of unpublished data and the suggestion of cloning the mcm1 mutant proteins into a high-copy-number plasmid.

M.G and A.S. are recipients of a Howard Hughes Medical Institute Undergraduate Summer Research Fellowship and Rutgers Undergraduate Research Fellowships. M.G. is a recipient of a New Jersey Cancer Commission Undergraduate Fellowship. This research was supported by a grant from the National Institutes of Health (GM49265) to A.K.V.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.