7
Views
46
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

hpr1Δ Affects Ribosomal DNA Recombination and Cell Life Span in Saccharomyces cerevisiae

&
Pages 421-429 | Received 19 Jun 2001, Accepted 08 Oct 2001, Published online: 28 Mar 2023
 

Abstract

Multiple genetic pathways have been shown to regulate life span and aging in the yeast Saccharomyces cerevisiae. Here we show that loss of a component of the RNA polymerase II complex, Hpr1p, results in a decreased life span. Although hpr1Δ mutants have an increased rate of recombination within the ribosomal DNA (rDNA) array, this is not accompanied by an increase in extrachromosomal rDNA circles (ERCs). Analyses of mutants that affect replication of the rDNA array and suppressors that reverse the phenotypes of the hpr1Δ mutant show that the reduced life span is associated with increased genomic instability but not with increased ERC formation. The hpr1Δ mutant acts in a pathway distinct from previously described mutants that reduce life span.

We thank L. Guarente for the yeast strain W303R and for the generous gift of the biotin magnetic beads. We thank E. Nudler for comments and critical reading of the manuscript.

This work was supported by grant GM30439 from the National Institutes of Health.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.